
RDi-R163 272 USER'S IVNNUAL FOR THE PROTOTYPE ROR (TEEAR) In1
COMPILER EVALUATION CAPRB.. (U) INSTITUTE FOR DEFENSE
ANALYSES ALEXANDRIA VA R A HOOK ET AL. OCT 65

UNCLSSIFIED IDR-P-1879 IDA/HQ-BS-26428 MD93-04-C-0031 F/O 9/2 AL

111L6*O 1 2.0

11111 L 13

MICOCPY ESLUTONTES CAR

NAS.A h 01A INE P. b

-1 -
copy 14 of 520pWh

AD-A163 272

IDA PAPER P-1879

USER'S MANUAL FOR THE PROTOTYPE Ada*
COMPILER EVALUATION CAPABILITY (ACEC)

VERSION 1

Audrey A. Hook
Gregory A. Riccardi

Michael Vilot
-i 0Stephen Welke

8 October 1985 2

OTC
E L E E

SJAN I, r~8

Prepared for
Office of the Under Secretary of Defense for Research and Engineering

p- IINSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office). S

.. .'~, -a * - IDA Log No. HO 5-30423
....

Aprvdfor public release; dblstrlb i mmien

The work mrepted In this documen was ceduuted under contat
MDA 903 84 C 0031 for the Depbartet ofl Delous. The pvbicftmn
of this IDA Pape does not Indicate endorsement by the DePortNmn
of Defense, no should the contents be construed a reflecting the
offiil Position of that sacy.

Thi Paper has been reviewed by IDA to assure that It Meet high

ooyand that the conclusions stemn from the .ethdelg.

19b

F-

.E(UITY CLASSIFICATION Of 11415 1 k j(

REPORT DOCUMENTATION PAGE
.-to REPORT SECURITY CLASSIFICATION lb M N'tyfc !'f ff5ed)

UNCLASSIFIED

12.5j&t" ATO UHRT 3. DISTRIBUTION I AVAILABILITY OF REPORT& OELAS~T~~GC.NE ULEPublic release/unlimited distribution

I4 PERFORMING ORGANIZATION REPORT NUMUER(S) S. MONITORING ORGANIZATION REPORT NUMBER($)
IDA Paper P-1879

U. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicablo)

*Institute f or Defense Analyst s DoD IDA Management Office

k- ADDRESS (01ty. Stott, MWd ZIP Codle) 7b. ADDRESS (City, State. and ZIP Code)
1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311

t. NAME OF FUNDING ISPONSORING Sb. OFFICE SYMBOL 9. PRIOCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Office of the Unde Vf applable)

Secretary of Defense (R&E) OITSDRE -119A 903 84 C 00)31
BeS. AMORESS (0i1y. Stott. a&W ZV Code 10. SOURCE OF FUNDING NUMBERS
* Ada Joint Program Office PROGRAM IPROJECT ITASK IWORK UNIT

121 . er S.ELEMENT NO. No. No. rCCESSION NO.
L Arlington, VA 22202 1 T-5- 328 -

I1. TITLE Prichode Secuvily Clausiftion)

User's Manual for the Prototype Ada* Compiler Evaluation Carahility (ACEC) Version 1

1.PERSONAL AUTHOR(S).

SAudrey A. 'look, Gregory A. Riccardi, Michael Vilot, Stephen Welke
13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month. Day) IS. PAGE COUNT
Iinal Fi±o1 - FROM _____TO ____I October 1985 166

-16. SUPPLEMENTARY NOTATION

U 1 COSATI CODES is. SUBJECT TERMS (Continue on 'ewn@ N netenary and identify by block number)
FIELD IGROUP sue-GROUP Ada progranmming language, comnilers, ACEC, ACVC, evaluationI I & validation, data collection, support software, software

I ~ architecture
19. ABSTRACT (Continue on ,wves If nhceuasy and Idenift by block number)
IThe purpose of the Prototype Ada Compiler Evaluation Canabilitv (ACEC) is to provide users
*Iwith 1) an organized suite of compiler performace tests, and 2) support software for
executing these tests and collecting performance statistics. These performance tests were

*collected by the Ada Evaluation and Validation (E&V) Team from several sources. The test
programs, which have been in the public domain for some time, have been organized as a test
suite according to categories which are explained in Section II. The strategy for measuring

* test performance and obtaining differential statistics is described in Section III. Section

IV describes the entire Support software architecture, including machine-denendent modules.
General instructions for executing the Prototyne ACEC are provided in Section V.

20 DISTRIBUTIONI/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDI1NLIMITED 0 SAME AS RPT. 0 DTIC USERS

22a NAME Of RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Incluodle Area Code) 22c OFFICE SYMBOL

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION -OF TIS PAGE
All other editions are obsolete

Pf"

IDA PAPER P-1879

USER'S MANUAL FOR THE PROTOTYPE Ada
COMPILER EVALUATION CAPABILITY (ACEC)

VERSION 1

IL

Audrey A. Hook
Gregory A. Riccardi

Michael Vilot
* Stephen Welke

Aocession For

NTIS R&
DTIC TAB

October 1985 Unannounced 0
Justification

Distribution/

Availability Code$

[Avail and/or

DIst Special

K$ --------- "-
°,.°

IDA
Mr INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-5-328

: .-.'V

-------------- S .::::.

ATTRIBUTION

The User's Manual was prepared by the IDA team who
developed the Prototype ACEC. The members of this team were:

Audrey Hook, IDA
Max Robinson, IDA
Steve Welke, IDA
Jeff Clouse, IDA
Dr. Gregory Riccardi, Florida State University
Dr. Ugo Gagliardi, General Systems Group
Michael Vilot, General Systems Group

Others who made contributions to the development of the Prototype
ACEC were:

Virginia Castor, AJPO
Jon Squire, Westinghouse Electric Corporation,

who as chairman of the SIGADA Performance Issues
Working Group (PIWG), obtained member volunteers
who performed the Beta test for the Prototype ACEC
and thereby contributed to the User's Manual.
These volunteers were:

Robert Gable, Lear Siegler Instruments Division
Daniel Ehrenfried, Rational L

. .

- '-

-~-% -.- -1 -.- °-

K:i TABLE OF CONTENTS

SECTION PAGES

I - INTRODUCTION 1-2

II - TEST CATEGORIES AND ATTRIBUTES 3-5

III - DATA COLLECTION AND EVALUATION 6-7

i IV - SOFTWARE ARCHITECTURE 8-11

V - EXECUTION INSTRUCTIONS 12-14

APPENDIX

A - TEST SUITE - LISTING OF TESTS

B - ADA PACKAGES FOR SUPPORT SOFTWARE

C - REPORT WRITER'S GUIDE

D - EXECUTION EXAMPLES
DATA GENERAL MV10000
VAX/VMS

LIST OF FIGURES

1 - Test Data Collection 7
2 - Software Architecture 9
3 - Compilation Order 11
4 - Format of the Statistics Files 13

iiii

r.r

- ..-.

PROTOTYPE ADA COMPILER EVALUATION CAPBABILITY
VERSIONi1k

USER'S MANUAL

SECTION I: INTRODUCTION

The purpose of the Prototype Ada Compiler Evaluation
Capability (ACEC) is to provide users with 1) an organized suite
of compiler performance tests, and 2) support software for
executing these tests and collecting performance statistics.
These performance tests were collected by the Ada Evaluation and
Validation (E&V) team from several sources. The test programs,
which have been in the public domain for some time, have been

r organized as a test suite according to categories which are
explained in Section II (Appendix A is a listing of the names
and descriptions of all the tests in the test suite). They have
also been instrumented to provide execution statistics. The user

- can obtain differential execution statistics for the Ada language
feature(s) used in a test by comparing different versions of thePbtest. The strategy for measuring test performance and obtaining
differential statistics is described in Section III.

-The support software that is provided with the system
consists of Ada packages (see Appendix B). This software
includes an interface to a database of test attributes, an
instrumentation package designed to collect execution statistics,
and a report writer. All of these packages should run on
any hardware host. However, to make the Prototype ACEC complete,
there are host/target machine-dependent modules that a user must
provide as part of the support software. These modules are
required in order to collect the compilation and run-time
statistics that are only available through the operating system

- andlor software monitors for that machine. The entire support
software architecture, including the machine-dependent modules,
is described in Section IV.

The intended users of this system will be programmers
who are familiar with their Ada compilation system. They must
know how to invoke the compiler and host/target dependent
portions of the Prototype ACEC. A user who is familar with the
Ada Compiler Validation Capability (ACVC) should find that the
Prototype ACEC is roughly equivalent in execution complexity to
the ACVC; however, the number of tests to be executed by the-.-.

r
• 1 -

Prototype ACEC is an order of magnitude less than the number in
the ACVC. General instructions for executing the Prototype ACEC
are provided in Section V.

Several general concepts are useful for understanding the
significance of the measurements that can be obtained from the
Prototype ACEC. The current view of compiler evaluation tests

, "is similar to the concept of benchmarks designed to demonstrate
the performance characteristics of a computer system when it is
used for processing a typical workload. Benchmarks are programs,

'. or sets of programs, that are used to represent a real workload;
therefore, they are a synthetic workload which may or may not
accurately represent the future capacity and efficiency
requirements for a specific application. Typically, benchmark
programs provide general measurements of execution efficiency
and are used to indicate the relative capabilities of different

- computer systems or alternative configurations. On the other
hand, the Prototype ACEC allows the user to measure the effect of
specific workloads on a particular computer system component, the
compiler.

The design goal for the Prototype ACEC was to collect
objective, quantifiable attributes of an Ada compiler/run-time
combination that would allow an applications developer to
evaluate the usefulness of a compiler for a future application.
The usefulness of a compiler is a function of the language
constructs that are most frequently used (i.e. required) by an
application and the effect that they produce in demand for
computer resources. These most frequently used language
constructs are the "stress load" for a compiler which, in turn,

. may have the effect of a "bottleneck" in the computer system
configuration. Since applications differences lead to remarkably
different frequency distributions of language features, the

- Prototype ACEC was designed to allow a user to select tests for
specific constructs and to obtain consistent measurements for the

.. "costs" (e.g. time and space) associated with these constructs
when they are used in various compiler/run-time combinations.

Therefore, the Prototype ACEC provides a user with two
options for evaluating an Ada compiler. A user may select a set

. . of tests which represents the frequency distribution of language
constructs in a real application; or, the user may execute all
tests to gain some insight regarding the language feature(s)

' -, which could be a stress load for a compiler/run-time combination,
- if these features were among the most frequently used. HOWEVER,

PROTOTYPE ACEC MEASUREMENTS ARE ONLY AN INDICATION OF THE EFFECT
PRODUCED BY AN ADA LANGUAGE FEATURE WHEN IT IS USED IN A
PARTICULAR COMPILER/RUN-TIME COMBINATION. THESE MEASUREMENTS ARE
NOT ABSOLUTE PERFORMANCE METRICS OF THE EFFICIENCY OF A
PARTICULAR COMPILER ARCHITECTURE.

r

2

- * * * .. . * *•*

. - .

SECTION II: TEST CATEGORIES AND ATTRIBUTES
4

This section discusses the architecture categories that
have been established for the Prototype ACEC test suite and the
attributes of these tests which are available through the support

- software. The attributes of each test unit are keyed to the
category and sub-category classification of that test.

it.

* A. ARCHITECTURE CATEGORIES

Test units have been organized into two major groups based
upon the information that the test unit will provide to the
user. The first group of tests will provide information about

i language features that must be present in a compiler if it is a
full implementation of the ANSI/MIL-STD 1815A. Therefore, these
tests are called "normative" since they will produce the lowest
level of measurement statistics that can be collected to
characterize the performance of a conforming compiler. The
second group of tests will provide information about combinations
of language constructs and/or compiler features that may be of "
interest to applications developers. These tests are called
"optional." These two major categories, normative and optional,
have been further sub-divided based upon the type of measurements
that can be derived from the tests. A description of each
category and sub-category is given below:

A.1. NORMATIVE

Normative tests will provide a means for determining
the, system cost for a particular language feature. The user
should execute all normative tests to obtain a quantitative

III indication of the usefulness of a compiler. There are two
types of tests in the normative category:

* A.1.1 Sub-category: PERFORMANCE

Performance tests will collect speed and space
attributes for various Ada language features.

A.1.2 Sub-category: CAPACITY

Capacity tests will indicate the limitations
imposed by the compiler and the run-time system on
applications developers (e.g. levels of recursion, size
of stack, etc.). Note that these tests may overlap with

* .the ACVC, class D tasts.

r
!3

"" ", . "... *

7P

L S

A.2 OPTIONAL

Optional tests may be selected by a user to representIan applications profile consisting of most frequently used
language features. They have been included in the Prototype
ACEC test suite to provide measurements which are consistent -
with normative tests.

A.2.1 Sub-category: FEATURES

0Features tests provide measurements of optional
language features (features which are not a required part
of an Ada compiler). They also provide measurements of
the effects of certain compiling options. Refer to
Chapter 13 of the Ada LRM for examples of optional
language features.

A.2.2 Sub-category: SPECIAL ALGORITHMS

Special algorithms tests are combinations of
language constructs that are characteristic of synthetic
benchmark programs. They include sveh widely known
benchmarks as Whetstone and the Sieve of Eratosthenes....

B. TEST ATTRIBUTES

5 For each test there are attributes, including an
architecture category as described above, that provide a user

•. with descriptive information about that test. These
attributes are stored in a database of test names, and are
available via the report writer. They can also be used as search
criteria for selecting a set of tests with a specified attribute

* (see Appendix C under the description of the "LIST" option). The ,
attributes are listed below:

B.1 DESCRIPTION - A description of the test objective.

B.2 ARCHITECTURE CATEGORY - Code indicating membership in a
major test category and a particular sub-category. g

B.3 E&V CRITERIA - The evaluation criteria for this test,
according to the list developed by the E&V Team. Only
certain Efficiency criteria were found to be applicable.

B.4 LANGUAGE FEATURE - The language feature(s) being tested. p
The Prototype ACEC does not cover all of the Ada
language features.

4j. 4-i -

B.5 VERSION - Identification of whether this is the test or
the control program, or the test with an optimization
feature (see Section III).

.- B.6 STATISTICS TYPE- A description of the kind of
statistics being collected (Compilation, Execution, or
Both).

I"

5

SECTION III: DATA COLLECTION AND EVALUATION

The individual Ada main procedures that comprise the
Prototype ACEC test suite were adapted from test programs that
have been in the public domain for some time.(*) Each of these
procedures (a test unit) can provide compilation and execution
statistics. The ability to collect data is determined by the
facilities of the host/target environment and the Ada support
software in the Prototype

ACEC.

Figure 1 (see page 7) shows the data collection scheme for
a single test. The figure indicates the location of clock
measurements used to derive the various elapsed and cpu times.
Also shown are the possible size measurements of objects created
or used in compiling and executing a test. Note that only the
instrumentation elapsed time is calculated by the provided
software; all other statistics must be determined by some
host/target dependent mechanisms. (See Section IV and Appendix B

* for a description of the support software functionality and
interface specifications for the host/target environment.)

The data collected for an individual test is not of much
use unless used in a differential strategy which filters out

. aspects of compilation and execution that are not caused by the
specific feature under evaluation. To make this strategy
possible, most tests have more than one version. The first
version, the control, is structured like the other versions of
the test, but does not contain the specific feature being tested.
The other versions (there may be only one) of the test contain

*' the language feature, with or without various optimizations.
Once the data for at least two versions has been collected, a

* .statement can be made about the feature under test.
SI

For instance, suppose the control version of an integer
addition test takes 0.15 seconds to execute, while version 2 of
the same test, the test version, takes 0.25 seconds to execute.
This would indicate that the execution overhead for having the
integer additions was 0.10 seconds. If version 3, with the
PRAGMA SUPPRESS, executed in 0.23 seconds, it could be said that
0.02 seconds were saved by use of this optimization. This same
type of differential measurement strategy is used on the other
time and size data to form conclusions about the time and space
"costs" of the Ada language feature being tested.

--

(*) These original tests were written by many people with
* different styles and objectives. Minimal changes were made to
.. these tests to adapt them to the test suite architecture. New

tests were not written for this Prototype ACEC.

6

Figure 1

Test (Data Collection

TES
ELAPSED QN1

(0ICT
GENERAT ED

ELABORATION

ELAPSED EXECUTION IMAGE INAGE PTIE /

ISIZ

OIN
7OKN AADT

(SIZ
.

.
COMPILATION

"-

SECTION IV: SOFTWARE ARCHITECTURE

The Prototype ACEC consists of several software components,
some of which are provided in Ada source code, and some of which
are necessarily implementation-dependent. Figure 2 (see page 9)
is a representation of the software components and their

, interrelation.

In reference to Figure 2, the software components provided
as Ada source code are the database package, the report writer,
the instrumentation package, and the set of benchmark tests. The
database package and the instrumentation package are not Ada main
programs; rather, they are library packages. The database
package is intended primarily for use by the report writer, but
is available for use by the selector as well. In contrast, the
instrumentation package is intended for use solely by the
benchmark test programs themselves. The report writer and the
benchmark tests are Ada main programs. The report writer,
database package, and instrumentation package are described in

*more detail below. Instructions for executing the support
software are provided in Section V.

The Database Package:
The database package provides basic facilities to retrieve

information about a named benchmark test. The information
available through the database package corresponds to the

-iattributes described in Section II. Included are a one-line
description of the test, the architecture category that the test
falls under, the E&V Criteria that the test provides information
about,' the language feature(s) that the test examines, the
version of the test that this particular program represents, and
an indication of what statistics are expected to be collected for
this test. This package is contained in the file DATABASE.ADA
and depends on the library package(s) contained in the files
LISTPACKAGE.ADA and SCHEMA.ADA.

The Instrumentation Package:
-" The instrumentation package provides a simple start-stop

timing facility based on the built-in clock capabilities of the
Ada package CALENDAR. This facility determines the total time
that has elapsed during execution. The instrumentation package
also provides a package CPU_TIME.ADA for collecting the cpu time

. used during execution.
The CPU_TIME.ADA package that comes with the system

contains a dummy function called CPUCLOCK that returns the
value 0.0. In order to collect meaningful results, the user will
have to replace the dummy CPU-CLOCK with a new CPUCLOCK
function that accesses the system accounting information.

-.- However, this replacement is not required; the system will
function properly with the dummy function. -'

m r '

8. -•. ,.

• o• o--*.

Figure 2 .

Software Architecture

wRITER

EXCCUTORINS LER NEPR

STRITE

C ~TESTODATA rL.

LEGEND

4....~m CONTROL IMPLEMENTATION-DEPENDENT MODULES

4---- DATA FLOW () INTERFACE FORMAT PROVIDED

D PROVIDED ADA SOURCE CODE

9

4W77

C r

The instrumentation package is not intended for use outside
of the test suite. It is contained in the file INSTRUMENT.ADA
and depends on the library package(s) contained in the file

* IOPACKAGE.ADA.

The Report Writer:
The report writer is the visible interface to the user. Its

function is to report both collected statistics and desired
database attributes. A detailed explanation of the report writer
and how to use it is given in Appendix C. The report writer is
contained in the files INQUIRY.ADA and REPORTWRITER.ADA. In
addition, it depends on the library package(s) contained in the
files DATABASE.ADA, ATTRIBUTE.ADA, and IOPACKAGE.ADA.

Figure 3 (see page 11) presents the compilation
dependencies of the packages provided with the test suite.

The remaining software (the compiler, the executor and the
selector) is necessarily machine-dependent, and must be provided
by the user. In reference to Figure 2, the compiler is that set
of software that compiles a single benchmark test and stores the
collected compilation statistics in a file. Similarly, the
executor is that set of software that executes a single test and
stores the collected run-time statistics in a file. Interface
specifications for formatting the collected data, if this data is
available, are given in Section V. The selector is the overall
"system manager" that chooses tests to be run and operates the
compiler and executor. It makes the compilation and run-time
statistics files available to the report writer. As mentioned
previ6usly, the selector may also be used to access the database
directly.

Typically, the selector will consist of both software and
.:human input. For our example on the MV10000 AOS/VS system, we

chose the tests ourselves, and ran a test harness to manage the
running of the compiler and executor. The test harness also
reformatted the system accounting information to comply with the
interface specifications required by the report writer. The term
"test harness" refers to the portion of the selector that sends
tests through the compiler and executor. Test harness examples
are provided in Appendix D.

The executor is the series of system specific commands
needed to execute a compiled program and collect the resulting
statistics. In environments where host and target are different
machines, this sequence of steps can be quite complex.

10

...

-i7t7 to.0

Figure 3

Compilation Order

LISTPACKAGE. ADA

SCHEtIA. ADA

IDATABASE. ADA ATTRIBUTE. ADA 10 PACKAGE. ADA 0%i. ADA*

INQUIRY. ADA INSTRUMENT. ADA

REPORTWRITER. ADA Benchmark test~s)

(eg. ADD)SAl.ADA)

See Section IV under the description of "The

Instrumentation Package"

* Note: In order to compile a particular package, the package(s;

*pointing to it must be compiled first.

r

- -- . .. - . r r °" -

SECTION V: EXECUTION INSTRUCTIONS

This section of the User's Manual provides basic
- instructions for executing the Prototype ACEC system. These

instructions will help the users to 1) identify the software
modules that must be produced, 2) become aware of the various
options within the system, and 3) gain an overall view of how
this evaluation system works.

The system specific test harness mentioned in Section IV
processes the benchmark tests and collects system resource
statistics. On most systems, the test harness will consist of
one or more operating system command files that will compile and
execute each test program.....

Different operating systems make various accounting
information available to their users. This information can be
an important part of the evaluation statistics gathered by the
benchmarks. The statistics which are generated can be captured
and stored in text files. These files, if available, will

k become input to the report writer. The format for each of these
text files - the "TEST DATA" blocks in Figure 2 (see page 9) -

is specified in Figure 4. NOTE: The user-defined filenames must
be EXACTLY six characters long.

With these interface files well defined, the portable3 report writer software will be able to report as much data as can
be collected by the host and target environments. On those
systems where such accounting information is unavailable or
difficult to obtain, the report writer will still function
(although the lack of statistics will seriously degrade the
usefullness of the Prototype ACEC system).

-_

The Compilation Statistics:
Compilation statistics may be available from the compiler

that is being evaluated, or they may be available from host
system accounting information. In either case, there must be
some host-dependent software to convert the statistics into the
file format expected by the report writer. Figure 4a (see page
13) defines this format. These statistics must be appended onto
a user-defined compilation file after each test is compiled. If
parts of this information are not available, dummy values (such
as 0) must be placed in the file in order for the report writer
to use the file. p

The Instrumentation Statistics:
Each test program utilizes an instrumentation package which

reports the elapsed execution time of the test program. This
data is collected from the function CLOCK of package CALENDAR.

12

,' "

Figure 4

K Formats of the Statistics Files

For all three of the statistics files, each line of the file contains a

sequence of fields separated by one or more spaces:

(a) The Compilation-Time Statistics File

1 Test name (6 characters)

2. Total elapsed time, in seconds -
3. Total cpu time, in seconds

4. Object code size, in bytes --

5. Comments, a string of (up to) 120 characters

(b) The Instrumentation Statistics File

-. -1. Test name (6 characters)
*" 2. Total elapsed time, in seconds *

3 3. Total cpu time, in seconds

4. Comments, a string of (up to) 120 characters

(c) The Run-Time Statistics File

1. Test name (6 characters)

2. Total elapsed time, in seconds
3. Total cpu time, in seconds
4. Execution image size, in bytes
5. Working data size, in bytes
6. Comments, a string of (up to) 120 characters

I,

" . The report writer currently displays these real numbers with an

accuracy of 1/100th of a second

Integer numbers -

13

..

If available, CPU time can also be reported by modifying the
package CPUTIME which is provided in the support software. This
package contains the function CPUCLOCK which can be replaced to
return the execution cpu time using some host/target dependent
facility. (The CPU-CLOCK function that is provided returns the
dummy value 0.0). This data is automatically written onto a file
named "INSTR" at the end of the execution of the test program.
NOTE: The contents of this file ("INSTR") MUST be appended onto
a user-defined instrumentation file after each test program is
run. The instrumentation file format is shown in Figure 4b (see~page 13).

The Run-time Statistics:
These statistics are meant as a supplement to the

instrumentation statistics. Run-time statistics are collected
and properly formatted by host/target dependent mechanisms.
Again, these statistics must be appended onto the user's run-time '-
statistics file after each test program is run. Uncollectable
data must be entered as dummy values in the run-time file. The
format of this file is given in Figure 4c (see page 15).

t
.. Performing the Evaluation:

To start the evaluation process, the Ada code for the
support software must be compiled onto an Ada library. Figure 3
(see page 11) gives the compilation order. Next, the user may
develop the command files (the test harness) to help execute the
ACEC system. Once the full test harness is ready, tests can be
compiled and executed with all the generated statistics being
captured in text files. After any number of test programs have
been processed, the report writer should be executed with the
collected data files as input. The report writer and the test
harness can be re-run any number of times and in any order to
produce the final evaluation report(s). L

r r

14

IL

.

.. ,

...... -. ,. ,, ,.... , .-.. , _, ,. -, ., ..-. ,..,,,....,... .,...,.... ..- ... -.-.

APPENDIX A: TEST SUITE - LISTING OF TESTS

e This is a list of the benchmark tests that are currently in

the database. Included are the test names and descriptions. The
test names in the database are the same as the file names
containing the Ada main programs.

Each test name has three parts. The first four characters
I ~ describe the test characteristic. Where possible, these four

characters are organized into a mnemonic (i.e. SIEV -) Sieve of
Eratosthenes). Otherwise, an acronym has been constructed (i.e.
BRUA - Block Reference to an Uplevel variable, Access type).
The fifth character is a letter that represents a difference in
the number of occurrences of the test characteristic. For
example, LAVRAl performs one local array variable reference,
while LAVRBl performs ten references. The sixth character is the
version number. Version 1 is the control version and version 2
is the test version. The other versions (3, 4, etc.) test for
the effects of certain compiler features (i.e. PRAGMAs).

ADDSA1 10_000 floating pt. Additions (control)
ADDSA2 10_000 floating pt. Additions (test)
ADDSt.3 10_000 floating pt. Additions (pragma suppress)
AKERA2 Ackermann function (test)

I m AKERA3 Ackermann function (pragma suppress) L
AOCEA1 Arith. Optimization, Const. Elim. (control)
AOCEA2 Arith. Optimization, Const. Elim. (test)
AOIEAI Arith. Optimization, Invariant Elim. (control)
AOIEA2 Arith. Optimization, Invariant Elim. (test)
ASSIA2 500 ASSIGNMENT STMTS (I PER LINE)
ASSIA3 500 ASSIGNMENT STMTS (5 PER LINE)

. ASSIA4 500 ASSIGNMENT STMTS INTERJECTED WITH COMMENTS
ASSIA5 500 ASSIGNMENT STMTS PRECEEDED BY 500 COMMENTS
ASSIB2 1000 ASSIGNMENT STMTS INTERJECTED WITH COMMENTS
BALPAI EVALUATES THE EFFICIENCY OF A SIMPLE LOOP STATEMENT

(CONTROL)
BALPA2 THIS TEST EVALUATES THE EFFICIENCY OF A SIMPLE LOOP L

STATEMENT (TEST)
BLEMA2 65 EMBEDDED BLOCKS
BRUAA1 Block Ref. to an Uplevel var., Access type (control)
BRUAA2 Block Ref. to an Uplevel var., Access type (test)
BRUNAI Block Ref. to an Uplevel var., Non-access type (control)
BRUNA2 Block Ref. to an Uplevel var., Non-access type (test)
BSRCA2 TEST BINARY SEARCH PKG AT EXTREME LIMITS OF ITS INDEX

i - TYPE: LOWER
- BSRCA3 TEST BINARY SEARCH PKG AT EXTREME LIMITS OF ITS INDEX

TYPEE: UPPER
C31PA2 CHECKS THAT 31 PARAMETERS CAN BE PASSED

I t CAPAA1 Constrained Array Param. Assoc. w/3 elements (control)

A. 1

~L

CAPAA2 Constrained Array Param. Assoc. w/3 elements (test)
CAPABi Constrained Array Param. Assoc. v/63 elements (control)
CAPAB2 Constrained Array Param. Assoc. v/63 elements (test)
CASEA2 CHECKS A CASE STANTEMENT OF SIZE 256
CENTA2 CHECKS AN ENUMERATION TYPE OF 256 ELEMENTS
CENTB2 CHECKS ENUMERATION TYPES UP TO 2000 ELEMENTS
CHSSAl Char. String Search (control)

* CHSSA2 Char. String Search (test)
CHSSA3 Char. String Search (pragma suppress)

I L CSBTA1 Case Statement Binary Test (control)
* CSBTA2 Case Statement Binary Test (test)

CSCTA1 Case Statement Cluster Test (control)
CSCTA2 Case Statement Cluster Test (test)
CSDTA1 Case Statement Dense Test (control)
CSDTA2 Case Statement Dense Test (test)
CSETA1 Case Statement Exhaustive Test (control)
CSETA2 Case Statement Exhaustive Test (test)
CSSTAI Case Statement Sparse Test w/range 1 5 (control)
CSSTA2 Case Statement Sparse Test w/range 1 5 (test)
CSSTB1 Case Statement Sparse Test v/range 1..20 (control)
CSSTB2 Case Statement Sparse Test w/range 1 20 (test)
CSSTC Case Statement Sparse Test w/range 1 50 (control)
CSSTC2 Case Statement Sparse Test v/range 1 50 (test)
CSSTD Case Statement Sparse Test v/range 1 500 (control)
CSSTD2 Case Statement Sparse Test v/range 1 500 (test)
CSSTE Case Statement Sparse Test v/range 1 5000 (control)
CSSTE2 Case Statement Sparse Test v/range 1 .5000 (test)

I - DRPCA Direct Recursive Procedure Call (control)
DRPCA2 Direct Recursive Procedure Call (test)
FiIUAL EFFICIENCY OF LOOP STMT,FOR,LOOP PARAM USED IN LOOP BODY

(CONTROL)
FiIUA2 EFFICIENCY OF LOOP STMT, FOR, LOOP PARAM USED IN LOOP BODY
FACTAI RECURSIVE FACTORIAL FUNCTION (CONTROL)

I FACTA2 RECURSIVE FACTORIAL FUNCTION
FL2RAI EFFICIENCY OF A FOR LOOP STMT , REVERSE, 2 ITERATIONS

(CONTROL)
FL2RA2 EFFICIENCY OF A LOOP STMT USING FORR, REVERSE, 2

ITERATIONS
FLPiAi EVALUATES THE EFFICIENCY OF A LOOP STMT USING FOR, 1 ITER.

L (CONTROL)
FLPiA2 EVALUATES THE EFFICIENCY OF A LOOP STMT USING FOR, I

ITERATION
FLP2A1 EVALUATES THE EFFICIENCY OF A LOOP STMT USING FOR, 2 ITER.

(CONTROL)
FLP2A2 EVALUATES THE EFFICIENCY OF A LOOP STMT USING FOR, 2

ITERATIONS
FPAAA1 Formal in/out Param. Assoc. v/1 param., Access type

(control)
FPAAA2 Formal in/out Param. Assoc. w/i param., Access type (test)
FPAAB1 Formal in/out Param. Assoc. w/2 param., Access type

(control)
FPAAB2 Formal in/out Param. Assoc. v/2 param., Access type (test) r

A.2

.

FPAACI Formal in/out Param. Assoc. w/5 param., Access type
(control)

FPAAC2 Formal in/out Param. Assoc. w/5 param., Access type (test)
FPAADI Formal in/out Param. Assoc. w/10 param., Access type b

(control)
FPAAD2 Formal in/out Param. Assoc. w/10 param., Access type
FPA-ii (test)
-FPANA Formal in/out Param. Assoc. w/i param., Non-access type

(control)

ML FPANA2 Formal in/out Param. Assoc. w/i param.. Non-access type
(test)

FPANBI Formal in/out Param. Assoc. w/2 param.. Non-access type
(control)

FPANB2 Formal in/out Param. Assoc. w/2 param., Non-access type
(test)

FPANCI Formal in/out Param. Assoc. w/5 param.. Non-access type
(control)

FPANC2 Formal in/out Param. Assoc. w/i param., Non-access type
(test)

FPANDI Formal in/out Param. Assoc. w/10 param., Non-access type
(control)

FPAND2 Formal in/out Param. Assoc. w/10 param., Non-access type
(test)

FPRAAI Formal in/out Parameter Ref., Access type (control)
FPRAA2 Formal in/out Parameter Ref., Access type (test)
FPRNA1 Formal in/out Parameter Ref., Non-access type (control)
FPRNA2 Formal in/out Parameter Ref., Non-access type (test)* GVRAAI Global Var. Ref., Access type (control)
GVRAA2 Global Var. Ref., Access type (test)
GVRNAZ- Global Var. Ref., Non-access type (control)
GVRNA2 Global Var. Ref., Non-access type (test)
IADDAI Integer Addition (control)
HSDRA2 HEAPSORT BENCHMARK TEST DRIVER USES XOBMHSPK
IADDA2 Integer Addition (test) L
IDIVAl Integer Division (control)
IDIVA2 Integer Division (test)
IEXPAI Integer Exponentiation (control)

. IEXPA2 Integer Exponentiation (test)
IMIXAl Integer Mixed Expressions 01 (control)
IMIXA2 Integer Mixed Expressions 01 (test) L
IMIXB1 Integer Mixed Expressions 02 (control) -

IMIXB2 Integer Mixed Expressions 02 (test)
IMIXCI Integer Mixed Expressions 03 (control)
IMIXC2 Integer Mixed Expressions 03 (test)
IMIXDi Integer Mixed Expressions 04 (control)
IMIXD2 Integer Mixed Expressions 04 (test)
IMIXEI Integer Mixed Expressions 05 (control)
IMIXE2 Integer Mixed Expressions 05 (test)
IMODA1 Integer Modulus (control)
IMODA2 Integer Modulus (test)
IMULAl Integer Multiplication (control)
IMULA2 Integer Multiplication (test)

A.3

.L2...".--.............. "-".- .. -. .. "

iL

IREMA1 Integer Remainder (control)
INTDA2 CHECKS 150 INTEGER DECLARATIONS
INTDB2 500 DECLARATION STMTS FOR INTEGER

i INTDB3 500 DECLARATION STMTS FOR INTEGER (10 PER LINE)
INTQA2 TEST A FULL INTEGER QUEUE USING XOQUE PACKAGE
IREMA2 Integer Remainder (test)
ISEQA2 TEST GENERIC SEQUENCE MANIPULATION PACKAGE, 50 INTEGERS
ISUBAI Integer Subtraction (control)
ISUBA2 Integer Subtraction (test)
LAVRA1 I Local Array Var. Ref. (control)
LAVRA2 1 Local Array Var. Ref. (test)
LAVRBI 10 Local Array Var. Ref. (control)
LAVRB2 10 Local Array Var. Ref. (test)
LFIRA1 Loop Fuse, Index Ref. (control)
LFIRA2 Loop Fuse, Index Ref. (test)
LFSRAI Loop Fuse, Scalar Ref. (control) V
LFSRA2 Loop Fuse, Scalar Ref. (test)
LOAEA1 Loop Optimization, Asst. Eval. (control)
LOAEA2 Loop Optimization, Asst. Eval. (test)
LOECAl Loop Optimization, Expr. Calc. (control)
LOECA2 Loop Optimization, Expr. Calc. (test)

r LOFCA1 Loop Optimization, Function Call (control)
LOFCA2 Loop Optimization, Function Call (test)
LONEA1 Loop Optimization, Nested Expr. comp. (control)
LONEA2 Loop Optimization, Nested Expr. comp. (test)
LOSCAl Loop Optimization, Subscript Calc. (control)
LOSCA2 Loop Optimization, Subscript Calc. (test)
LOUIAI Loop Optimization, Unroll Index ref. (control)
LOUIA2 Loop Optimization, Unroll Index ref. (test)
LOUSAl Loop Optimization, Unroll Scalar ref. (control)
LOUSA2" Loop Optimization, Unroll Scalar ref. (test)
LRR1A1 First-level Local Record var. Ref. (control)
LRR1A2 First-level Local Record var. Ref. (test)
LRR2A1 Second-level Local Record var. Ref. (control)
LRR2A2 Second-level Local Record var. Ref. (test)
LRR3A1 Third-level Local Record var. Ref. (control)
LRR3A2 Third-level Local Record var. Ref. (test)
LVRAA1 1 Local Var. Ref., Access type (control)
LVRAA2 1 Local Var. Ref., Access type (test)

-LVRAB1 10 Local Var. Ref., Access type (control)
LVRAB2 10 Local Var. Ref., Access type (test)
LVRNA1 I Local Var. Ref., Non-access type (control)
LVRNA2 I Local Var. Ref, Non-access type (test)
LVRNB1 10 Local Var. Ref., Non-access type (control)
LVRNB2 10 Local Var. Ref., Non-access type (test)
MINIA2 MIMIMAL PROGRAM WITH 1 STMT , 1 DECLARATION
MTCQA2 TEST EMPTY CHARACTER QUEUE USING XOQUE PACKAGE
MTESA2 TEST EMPTY SET OF ENUMERATION TYPE USING XOSET PACKAGE
MTISA2 TEST EMPTY SET OF INTEGERS USING XOSET PACKAGE
MULTA1 10_000 floating pt. Multiplications (control)
MULTA2 10_000 floating pt. Multiplications (test)
MULTA3 10000 floating pt. Multiplications (pragma suppress)

• . . -A .

i

NLOOA1 Overhead for Nested Loops - NO loops (control)
NLO7A2 Overhead for 7 Nested Loops (test)
NL65A2 Overhead for 65 Nested Loops (test)
NPPCA1 No Parameter Procedure Call (control)
NPPCA2 No Parameter Procedure Call (test)
NRPCA1 Nested Recursive Procedure Call (control)
NRPCA2 Nested Recursive Procedure Call (test)
NULLA1 NULLPROCEDURE (CONTROL)
NULLA2 CALL TO NULL PROCEDURE

M aOPAEA1 Optimization Perf., Arith. Elim. (control)
OPAEA2 Optimization Perf., Arith. Elim. (test)
OPBFAI Optimization Perf., Bool. Folding (control)
OPBFA2 Optimization Perf., Bool. Folding (test)
OPCEA1 Optimization Perf., Call Elim. (control)
OPCEA2 Optimization Perf., Call Elim. (test)
OPCFA1 Optimization Perf., Constant Folding (control)
OPCFA2 Optimization Perf., Constant Folding (test)
OPDSA1 Optimization Perf., Distributed Simp. (control)
OPDSA2 Optimization Perf., Distributed Simp. (test)
OPISAI Optimization Perf., Identity Simp. (control)
OPISA2 Optimization Perf., Identity Simp. (control)
OPLEAI Optimization Perf., Load Elim. (control)
OPLEA2 Optimization Perf., Load Elim. (test)
OPNFA1 Optimization Perf., Num. Folding (control)
OPNFA2 Optimization Perf., Num. Folding (test)
OPSCA1 Optimization Perf., Subscript Cale. (control)
OPSCA2 Optimization Perf., Subscript Calc. (test)
OPSEAI Optimization Perf., Store Elim. (control)
OPSEA2 Optimization Perf., Store Elim. (test)
PGQUA2 TEST PUTEND AND GOTEND WITH AN ENUMERATED TYPE USING

XOQUE PKG
PIALA2 PI Algorithm (test)
PKGEA1 EACH PACKAGE BODY FOLLOWS DIRECTLY AFTER THE PKG SPEC

£ (CONTROL)
PKGEA2 EACH PACKAGE BODY FOLLOWS DIRECTLY AFTER THE PKG SPEC
PKGSA1 PACKAGE BODY SEPARATED FROM PACKAGE SPEC. (CONTROL)
PKGSA2 PACKAGE BODY SEPARATED FROM PACKAGE SPEC
PRCOA2 PRODUCER/CONSUMER PROBLEM

, PRPCAI Parallel Recursive Procedure Call (control)
PRPCA2 Parallel Recursive Procedure Call (test)
PRUAAI Proc. Ref. to an Uplev~l var., Access type (control)
PRUAA2 Proc. Ref. to an Uplevel var., Access type (test)
PRUNA2 Proc. Ref. to an Uplevel var., Non-access type (test)
PRUNAI Proc. Ref. to an Uplevel var., Non-access type (control)
SIEVAl Sieve of Eratosthenes (control)
PUZZA2 PUZZLE
PUZZA3 PUZZLE (PRAGMA SUPPRESS)
RANDA2 RANDOM NUMBER GENERATOR
RCDSA2 CHECKS 400 FIELD RECORDS
RENDA1 SIMPLE RENDEZVOUS (CONTROL)
RENDA2 SIMPLE RENDEZVOUS
SHARA2 READERS/WRITERS PROBLEM r

A.5

SIEVA2 Sieve of Eratosthenes (test)
SORTA2 TEST INSERTION SORT USING XOSORT PACKAGE
SQ1OA2 PUT 10 INTEGERS IN SEQUENCE AND TEST IF EMPTY USING XOSEQ

PACKAGE
SQPGA2 PUT AND GET 10 INTEGERS IN SEQUENCE USING XOSEQ PACKAGE
SRCRA1 Simple Record Component Ref. (control)
SRCRA2 Simple Record Component Ref. (test)
SRTEA1 Simple Record Type Elaboration (control)
SRTEA2 Simple Record Type Elaboration (test)
TAIPAl Task Perf. /i element Array 'in' Param. (control)
TAIPA2 Task Perf. w/i element Array 'in' Param. (test)
TAIPB1 Task Perf. w/32 element Array 'in' Param. (control)
TAIPB2 Task Perf. w/32 element Array 'in' Param. (test)
TAIPC1 Task Perf. w/64 element Array 'in' Param. (control)
TAIPC2 Task Perf. w/64 element Array 'in' Param. (test)ol
TAIPD Task Perf. w/320 element Array 'in' Param. (control)
TAIPD2 Task Perf. w/320 element Array 'in' Param. (test)
TAIPEi Task Perf. w/640 element Array 'in' Param. (control)
TAIPE2 Task Perf. w/640 element Array 'in' Param. (test)
TAIPF Task Perf. w/3200 element Array 'in' Param. (control)

. TAIPF2 Task Perf. w/3200 element Array 'in' Param. (test)
TAIPF2 Task Perf. w/6400 element Array 'in' Param. (control)
TAIPG2 Task Perf. w/6400 element Array 'in' Param. (test)
TAOPA1 Task Perf. v/i element Array 'in out' Param. (control)
TAOPA2 Task Perf. w/i element Array 'in out' Param. (test)
TAOPB1 Task Perf. w/32 element Array 'in out' Param. (control)
TAOPB2 Task Perf. w/32 element Array 'in out' Param. (test)
TAOPC Task Perf. w/64 element Array 'in out' Param. (control)
TAOPC2 Task Perf. w/64 element Array 'in out' Param. (test)
TAOPD1 Task Perf. w/320 element Array 'in out' Param. (control)

* TAOPD2 Task Perf. w/320 element Array 'in out' Param. (test)
TAOPE Task Perf. w/640 element Array 'in out' Param. (control)
TAOPD2 Task Perf. w/640 element Array 'in out' Param. (test)
TAOPF1 Task Perf. w/3200 element Array 'in out' Param. (control)
TAOPF2 Task Perf. w/3200 element Array 'in out' Param. (test)
TAOPG1 Task Perf. w/6400 element Array 'in out' Param. (control)
TAOPG2 Task Perf. w/6400 element Array 'in out' Param. (test)
TPGTA2 Task Perf., Guard Test, 2 guards (test)
TPGTB2 Task Perf., Guard Test, 2 guards (test)
TPGTC2 Task Perf., Guard Test, 20 guards (test)
TPGTD2 Task Perf., Guard Test, 20 guards (test)
TPITAi Task Performance w/1 Idle Task (control)
TPITA2 Task Performance w/i Idle Task (test)
TPITBi Task Performance w/5 Idle Tasks (control)
TPITB2 Task Performance w/S Idle Tasks (test)

F TPITCi Task Performance w/iO Idle Tasks (control)
TPITC2 Task Performance w/iO Idle Tasks (test)
TPITDi Task Performance w/20 Idle Tasks (control)
TPITD2 Task Performance w/20 Idle Tasks (test)
TPOTA2 Task Perf., Order Test (test)
TPOTB2 Task Perf., Order Test (test)
TPOTC2 Task Perf., Order Test (test)

A.6

. -* *- .*. -*.-. . -.*"*,

* TPSTA2 Task Perf Select test (test)
* TPSTB2 Task Perf., Select Test (test)

TPTCA2 Task Perf., Task Chain, lenght 1 (test)
TPTCB2 Task Perf., Task Chain, length 5 (test)

* • TPTCC2 Task Perf., Task Chain, length 10 (test)
TPTCD2 Task Perf., Task Chain, length 20 (test)

- TPUTA2 Task Perf. Unknown Test (test) .
* TPUTB2 Task Perf., Unknown Test (test)

TPUTC2 Task Perf., Unknown Test (test)
TPUTD2 Task Perf., Unknown Test (test)
TPUTE2 Task Perf., Unknown Test (test)

' UAPAAI Unconst. Array Param. Assoc. w/3 elems. (control)
UAPAA2 Unconst. Array Param. Assoc. w/3 elems. (test)
UAPAB1 Unconst. Array Param. Assoc. w/63 elems. (control)
UAPAB2 Unconst. Array Param. Assoc. w/63 elems. (test)
VFADAI Vector Floating pt. Addition (control)
VFADA2 Vector Floating pt. Addition (test)
VIADA1 Vector Integer Addition (control)

- VIADA2 Vector Integer Addition (test)
VPGSA2 TEST VARIOUS PUTS AND GETS IN SEQUENCE USING XOSEQ PACKAGE
WHETA2 WHETSTONE INSTRUCTIONS WITH FLOATS
WHETA3 WHETSTONE INSTRUCTIONS WITH FLOATS (PRAGMA SUPPRESS)
WHLPAI EVALUATES THE EFFICIENCY OF A LOOP STATEMENT USING WHILE

- (CONTROL)
" WHLPA2 EVALUATES THE EFFICIENCY OF A LOOP STATEMENT USING WHILE *""

A-.

)i) ..--
. * ,-..+--.

APPENDIX B ADA PACKAGES FOR SUPPORT SOFTWARE

The package specifications for all of the Ada packages in
the ACEC are provided below.

10_PACKAGE.ADA specification:

with TEXTIO;
use TEXTIO;

-- This package abstracts I/O operations from the Statistics files
-- defined in LISTSTATISTICS. It is a consequence of Ada that

. "- -- such procedures must be defined for any structured types.
-- The package encapsulates details about file contents, layout, etc.

package IOPACKAGE is

Constants

COLUMNS : constant :- 120;
-- must = SCHEMA.DESCRIPTIONLENGTH

UNITNAMELENGTH : constant :i 6;
-- must SCHEMA.NAMELENGTH

* MAXFILELENGTH : constant : 22;
C_HEADER constant STRING :i

Name Elapsed/CPU Code/Data Comments";
R_HEADER constant STRING

Name Event Elapsed/CPU Code/Data Comments";
I_HEADER: constant STRING :-

Name Event Elapsed/CPU Comments";

" -- Basic types
type Choice-Type is (STARTREC, COMREC, STOPREC);

- "subtype NameType is STRING(1..UNITNAMELENGTH).
subtype SizeType is NATURAL; -- integer bytes
subtype Comment-Length is NATURAL range 0..COLUNS;
subtype FileNameType is STRING(1..MAXFILELENGTH);

BLANKUNITNAME : Name_Type :- (others- ');
BLANKFILENAME : FileNameType :- (others- ' '):

-- Structured types -

" ;'.type FileRecordType is
record

FILEEXISTS : BOOLEAN :- FALSE;

B.1

FILENAME :FileNamejrype :-BLANKFILE-NAME;

INTERNALNAME : TEXTIO.FileType;
end record;

type CompilationRecord..Type(LEN :CommentLength :~0) is
* record

TEST_NAME Namne-.Type =BLANKUNIT-NAME;

dTOTALELAPSEDTIME: DURATION :=0.0; ~.-

TOTAL-CPUTIME DURATION :=0.0;

OBJECT-CODESIZE :Size-..Type :=0;

COMMENTS :STRING(1..LEN) ~(others=,')
end record;

type RunTimeRecord-.Type(LEN CommentLength 0) is
record

TEST_NAME :Name-.Type :=BLANKUNIT..NAME;

TOTAL..ELAPSEDTIME: DURATION :=0.0;

TOTAL_CPUTIME :DURATION :=0.0;

* MEMORY..CODESIZE :Size-Type :-0;

MEMORYDATASIZE Size-Type :-0;

* COMMENTS :STRING(1. .LEN) =(others

end record;

Etype InstrumentationRecordType(LEN :CommentLength :-10) is
record

TEST_NAME :Name-Type :=BLANKUNIT..NAME;

IDENT :Choice-Type :- STARTREC; .
ELAPSEDTIME :DURATION :=0.0;

ELAPSEDCPUTIME DURATION :=0.0;

COMMENTS :STRING(1. .LEN) -(others v)
end record;

-File I/O Operations

procedure GetFileName(FILE: in out FileRecordType);
rprocedure Open-.File(FILE: in out File_RecordType;

-' 7 .' .' * . . -W. --. _. .. r. '.. = .. - - ° o
' .

-o - -

-.-7 ik L7

MODE: in TEXTIO.FILE_MODE := INFILE);procedure CloseFile(FILE: in out FileRecordType);
procedure FileStatus(FILE: in FileRecordType);

-- Compilation I/0

. - procedure Get(FILE in File-Type;
,*> -:. VALUE : out CompilationRecordType)'

, procedure Put(FILE : in FileType:- CURRENTOUTPUT;
VALUE : in CompilationRecordType);

-- Run Time I/0

procedure Get(FILE : in File-Type;
VALUE : out RunTimeRecordType);

' procedure Put(FILE : in FileType:- CURRENTOUTPUT;
VALUE : in RunTime_RecordType);

-- Instrumentation I/O

procedure Get(FILE : in FileType;
VALUE : out InstrumentationRecordType);

procedure Put(FILE : in FileType:- CURRENTOUTPUT;
VALUE : in InstrumentationRecordType);

*end IOPACKAGE;

r LISTPACKAGE.ADA specification:

generic
type ListElement is private;

*package SinglyLinkedList is

-- Abstract : This package provides an abstraction for a singly linke

type List.Type is private;
function Empty (List : ListType) return Boolean;

-- Indicates whether the list contains any elements.
function Null_Node (List : List-Type) return Boolean;

-- Indicates whether the "current pointer" references an element in
-- the list.

function HeadNode (List : List-Type) return Boolean;
-- Indicates whether the "current pointer" references the head of
-- the list.

B.3

.* * * * * . .

function TailNode (List List-Type) return Boolean;
--"Indicates whether the "current pointer" references the tail of
-- the list.

function Current-Element (List : List-Type) return List-Element;
.. .. Returns the value of the element referenced by the "current

* -- pointer".
-- Raises EndError if NullNode(List) - True.
procedure First (List : in out ListType);

-- Positions the "current pointer" at the head of the list
S -- (even if the list is empty).
* procedure Next (List : in out ListType);

-- Positions the "current pointer" at the next element in the list.
-- After the last element in the list NullNode(List) becomes True.
-- Raises EndError if NullNode(List) = True.
procedure Insert-After (List in out List-Type;

Element: List_Element);
-- Inserts an element after the "current pointer".
-- If NullNode(List) - True the element is appended after the tail
-- element.
procedure InsertBefore (List in out List-Type;

Element : List-Element);
-- Inserts an element before the "current pointer".
-- If NullNode(List) - True the element is prepended before the
-- head element.
procedure Delete-Element (List : in out List-Type);

-- Deletes the element referenced by the "current pointer" from
-- the list.

-- -- Upon deletion, the "current pointer" references the element
-- after the deleted element.
-- Raises EndError if NullNode(List) - True.
generic-

with procedure Transformation (Element : in out ListElement);
procedure Modify (List : List.Type);

-- Permits modification of the element referenced by the "current
-- pointer" where the modification doesn't require external values
-- (e.g. incrementing a field of the element).
-- Raises EndError if NullNode(List) - True.
generic

type Update-Information is private;
with procedure Transformation (Element : in out ListElement;

Information : UpdateInformation);
procedure Update (List : List-Type;

Information : Update-Information);
-- Permits modification of the element referenced by the "current

. -- pointer" where the modification requires external values
-- (e.g. assigning a value to a field of the element). L

. -- Raises EndError if NullNode(List) - True.
pragma Inline (Empty, NullNode, Head-Node, Tail-Node, .'1

Current-Element);
pragma Inline (Modify, Update);
EndError : exception;f r.-

B.4

..

LCT

private
type Node;
type NodeAccess is access Node;I type Node is

- record
Element : ListElement;
Next Node-Access;

* .. end record;
type List-Type is

L record
Head : NodeAccess;
Tail : Node_Access;
Previous NodeAccess;
Current Node-Access;

end record;
end SinglyLinkedList;

SCHEMA. ADA specification:
- -- "

* with SINGLYLINKEDLIST;
* package SCHEMA is

-- exports 7 basic types describing test units:
-- ArchitectureCategoryType -- benchmark category of the test
-- Description-Type -- a string describing the test
-- ._and-V_CriterionType -- the E and V team category of

the test. May be more than one,
which is the reason for the
List types

E -- LanguageFeatureType -- the Ada language category of the
test. May also be more than one.

Name-Type -- the short name (also file name). - -

-- StatisticsType -- the priciple kind of statistics
measured by the test.

-- Version-Type -- the benchmark version of the
test.

-- the rest is there for implementation reasons

type ArchitectureCategoryType is (NORMATIVEPERFORMANCE,
NORMATIVECAPACITY, OPTIONAL_FEATURE,
OPTIONAL-ALGORITHM, EVERY); _

* DESCRIPTIONLENGTH constant :- 120; -- see User's Manual
• "" subtype Description-Type is STRING (I DESCRIPTIONLENGTH);

* *, CRITERIONLENGTH : constant :- 36;
subtype Eand_VCriterionType is STRING (1 .. CRITERIONLENGTH);

B.5

;:: - . ',-.', 1

"."** * - - * *... * --* S*..* .

IV-

FEATURELENGTH constant :- 51;
subtype LanguageFeatureType is STRING (I .. FEATURELENGTH);

, NAMELENGTH constant := 6;
subtype Name-Type is STRING (1 NAMELENGTH);

type Statistics-Type is (COMPILATION, EXECUTION, BOTH);

type Version-Type is (CONTROL,TEST, OPTIMIZE, SUPPRESS, OTHER,
ALLVERSIONS);

-- Lists of E and V Criteria

type E-and_V_CriterionAbbrevatonType is (EFFCY01, EFFCY06,
EFFCY13, EFFCY18, EFFCY21, EFFCY22, EFFCY26,
EFFCY29, EFFCY32);

. package CRITERIONLISTS is
new SINGLYLINKEDLIST(E-and_V_CriterionAbbreviationType);

use CRITERIONLISTS;
type E-and_VCriteriaList is new CRITERIONLISTS.ListType;
function EXPAND(KEY: Eand_V_CriterionAbbreviationType) return

E-and_V_CriteronType;

-- Lists of Language Features
- - - - - - -- -

type LanguageFeatureAbbreviationType is
(IDENTIFIERS, LITERALS, DERIVED-TYPES,
SCA.ARTYPES, ARRAY_TYPES, RECORDTYPES,
ACCESSTYPES, LOCAL_NAMES, NONLOCAL_NAMES,
INDEXED-COMPS, SLICES, SELECTED-COMPS.
ATTRIBUTES, AGGREGATES, RECORDAGGS,
ARRAYAGGS, EXPRESSIONS, LOGICALOPERATORS, L
RELATIONAL_OPERATORS, BINARY-ADDS, UNARY_ADDS,
MULTIPLYINGOPS, HIPRECEDENCEOPS, TYPE_CONVERSIONS,

. QUALIFIEDEXPRESSIONS, ALLOCATORS, STATICEXPRSSUBTYPES,
ASSIGNMENT, ARRAYASSIGN, IFSTMTS,

" CASESTMTS, LOOP_STMTS, BLOCKSTMTS,
EXIT_STMTS, RETURNSTMTS, GOTOSTMTS,
SUBPROGRAM_DECLS, SUBPROGRAMCALLS, PARAMETERASSNS,
DEFAULTPARMS, OVERLOADING, PACKAGESPECSDECLS,
PACKAGE-BODIES, PRIVATE_TYPES, REFERENCESTOOBJECTS,
USE-CLAUSES, RENAMINGDECLS, TASKTYPESOBJECTS,
TASKEXECUTION, TASK_DEPENDENCE, ENTRIESACCEPTS,
DELAYSTMTS, SELECTSTMTS, SELECTIVEWAITS,
CONDITIONALENTRIES, TIMEDENTRIES, TASKENTRYATTRIBS,
ABORTSTMTS, CONTEXTCLAUSES, SUBUNITS,
EXCEPTIONDECLS, EXCEPTIONHANDLERS. RAISE_STMTS.
EXCEPTIONPROPAGATION, GENERICDECLS. GENERIC-BODIES,

* GENERICINSTS, USESOF_GENERICINSTS, REPRESENTATIONCLAUSES
LENGTH_CLAUSES, ENUMREPCLAUSES, RECORDREPCLAUSES,

B.6

.

. . . . ** - ,*--- .*.- . .- *•.. . . *,.-.-... * . .** .* *
-- -

* *, - o. - . - .. y'. ,.. i .. .X rv r.w .r w -- .& -. 4. o I -- - .-. . .. - °r -
U .. .T " .. i

ADDRESSCLAUSES, CHANGEOF_ REP, MACHINECODEINSERTS,
UNCHECKEDPGMING. SEQDIRFILES, TEXTINPUTOUTPUT,
PRAGMAINLINE, PRAGMA_OPTIMIZE, PRAGMAPACK,
PRAGMASHARED, PRAGMASUPPRESS);

package FEATURELISTS is
new SINGLYLINKEDLIST(LanguageFeatureAbbreviationType);

use FEATURELISTS;
type LanguageFeaturesList is new FEATURELISTS.ListType;

I 4 function EXPAND(KEY: LanguageFeatureAbbreviationType) return
LanguageFeatureType;

-- Lists of Test Unit Names

package NAMELISTS is new SINGLYLINKEDLIST(NameType);
use NAME-LISTS;
type NameList is new NAMELISTS.List.Type;

end SCHEMA;

ATTRIBUTE.ADA specification:

with SCHEMA;
use SCHEMA; L
package ATTRIBUTEOPTIONS is

-- LISTBYNAME means that attributes will be listed for a
-- single instance of a test file name
-- LISTBYCATEGORY means that attributes will be listed for

S -- all test files included in the specified attribute

type Listing-Type is (LISTBYNAME, LISTBYCATEGORY);
type AttributeType is (SHORT, TEST-NAME, DESCRIPTION,

ARCHITECTURE, EANDV, LANGUAGEFEATURE,VERSION, STATISTICS) .
subtype CategoryType is:i

Attribute-Type range ARCHITECTURE..STATISTICS;

These subprograms set and observe the internal state maintained by
the package body

procedure SETLIST(SWITCH : in Listing-Type :-LIST_BYNAME);
function LISTING return Listing-Type;

procedure SET(OPTION : in Attribute-Type);
procedure RESET(OPTION : in Attribute-Type);
function ISSET(OPTION : in Attribute-Type) return BOOLEAN;

B.7

-. °

,. . . .- ._ .- . .. b .. , ., .,. . ,,,-.• . . ,- 2 : 2

procedure SETQUERY(VALUE
in ArchitectureCategory-Type)"

procedure SETQUERY(VALUE
in Eand_V_CriterionAbbreviationType); p.

procedure SETQUERY(VALUE
in LanguageFeatureAbbreviationType);

procedure SETQUERY(VALUE
in Statistics-Type);

procedure SET_QUERY(VALUE :
in Version-Type); I.

. function CATEGORY return Category-Type;

function VALUE return ArchitectureCategory-Type;
function VALUE return Eand_VCriteronAbbreviationType; ;
function VALUE return LanguageFeatureAbbreviationType;
function VALUE return Statistics-Type;
function VALUE return Version-Type;

end ATTRIBUTE-OPTIONS;

DATABASE.ADA specification:

* with SCHEMA;
use SCHEMA;
package DATABASEINTERFACE is

-- Each of the following functions will take as input a test name.
-- and return as output either a single object or a list of objects

* -- as determined by the specific function called.

function GETDESCRIPTION(INPUTNAME : Name-Type)
return Description-Type;

function GETARCHCATEGORY(INPUTNAME : Name-Type)
return ArchitectureCategoryType;

function GET_E_AND_V_CATEGORIES(INPUTNAME : NameType)
return Eand_V_Criteria_List;

function GETFEATURES(INPUTNAME : Name-Type)
return LanguageFeaturesList;

function GETSTATISTICS(INPUT-NAME : NameType)
return Statistics-Type;

function GETVERSION(INPUTNAME : Name-Type) f
return Version-Type;

""* function NAMES(ATTRIBUTE: ArchitectureCategoryType)
return NameList;

function NAMES(ATTRIBUTE: Eand_V_CriterionAbbreviationType)
return NameList;

B.8

I .-

. .
.

function NAMES(ATTRIBUTE: Statistics-Type)
return NameList;

function NAMES(ATTRIBUTE: Version-Type)
return NameList;

function NAMES(ATTRIBUTE: LanguageFeatureAbbreviationType)
return NameList;

* NOT-FOUND, -- raised when unit not in database
CONSISTENCYERROR: exception; -- raised when database file

-- is corrupted

end DATABASEINTERFACE;

CPUTIME.ADA specification:

package CPUTIME is
function CPUCLOCK return duration;

end CPUTIME;

INQUIRY. ADA specification:

package INQUIRYOPERATIONS is

. type Command-Type is (COLLECTCOMMAND, SELECT-COMMAND,
PRINT_COMMAND, HELPCOMMAND,

* SAVECOMMAND, LISTCOMMAND,
QUIT-COMMAND);

-- ANSWER prompts the user for a Yes-No response, converting the
-- result to type BOOLEAN
-- REQUEST prompts with a menu of choices, converting the
-- result to type Command-Type
-- INITIALIZE prints greeting and initial help info.
-- COLLECT could be called more than once, to change file name setup
.. ..- builds Current Files Record and opens Statistics files.
-- SELECT could be called repeatedly, to change selections
.. ..- builds Current Options Record
-- LIST could be called out-of-sequence, and repeatedly
.. ..- uses built records
-- PRINT dumps the current contents of the statistics files
-- SAVE prints (a less formatted) version of the Report dialog to .'- ,
-- a named file -.

•. -- HELP re-displays the initial prompt.
-- QUIT closes any open files and exits. -

B.9

.

.

function REQUEST return Command-Type;
procedure INITIALIZE;
procedure COLLECTFILES;
procedure SELECTATTRIBUTES;
procedure LISTSTATISTICS;
procedure PRINT-FILES; -

procedure HELPPROMPT;
procedure SAVESTATISTICS;

I procedure QUIT;

- end INQUIRYOPERATIONS;

INSTRUMENT.ADA specification:

package Instrument is
-- The Instrument routines.

procedure START -- THIS ROUTINE MUST BE INVOKED AT THE
-- START OF A TEST, BEFORE ANY OF THE
-- OTHER REPORT ROUTINES ARE INVOKED.
-- IT SAVES THE TEST NAME AND OUTPUTS
-- THE NAME AND DESCRIPTION.

(NAME STRING; -- TEST NAME, E.G., "C23001A-AB".
DESCR : STRING -- BRIEF DESCRIPTION OF TEST, E.G., .

-- "UPPER/LOWER CASE EQUIVALENCE IN
&-- "IDENTIFIERS".

procedure COMMENT -- OUTPUT A COMMENT MESSAGE.
I g C DESCR : STRING -- THE MESSAGE.

procedure STOP; -- THIS ROUTINE MUST BE INVOKED AT THE
-- END OF A TEST. IT OUTPUTS A MESSAGE
-- INDICATING WHETHER THE TEST AS A
-- WHOLE HAS PASSED OR FAILED, OR IS
-NOT-APPLICABLE.

-- THE DYNAMIC VALUE ROUTINES.
-- EVEN WITH STATIC ARGUMENTS, THESE FUNCTIONS WILL HAVE
-- DYNAMIC RESULTS.
function IDENTINT -- AN IDENTITY FUNCTION FOR TYPE

-- INTEGER.
(X : INTEGER -- THE ARGUMENT.
) return INTEGER; -- X.

function IDENTCHAR AN IDENTITY FUNCTION FOR TYPE
-- CHARACTER.

(X CHARACTER -- THE ARGUMENT.
) return CHARACTER; -- X.

B. 10

function IDENTBOOL -- AN IDENTITY FUNCTION FOR TYPE
-- BOOLEAN.

(: BOOLEAN -- THE ARGUMENT.
) return BOOLEAN; -- X.

function IDENTSTR -- AN IDENTITY FUNCTION FOR TYPE
-- STRING.

(: STRING -- THE ARGUMENT.
) return STRING; -- X.

function EQUAL -- A RECURSIVE EQUALITY FUNCTION FOR
-- TYPE INTEGER. f

(X, Y : INTEGER -- THE ARGUMENTS.
) return BOOLEAN; -- X = Y.

generic
type GEN-TYPE is (<,);

package PROCS is
type t is new gen-type;
type ref-t is access t;
global: t;
global-object: t;
GLOBALACCESS: REFT := new T;
INIT: constant T := T'FIRST;
function IDENT(X: in T) return T;
procedure LET(X: in out T; Y: T);

end PROCS;

generic
type gen-type is (');
arrsize: integer;

pAackage arr-procs is
subtype index is integer range 1..arrsize;
type t is array(integer range -) of gen-type;
init: t(index) := (others =, gen type'first);
global: t(index);
function ident(x: t) return t;
procedure let(x: in out t; y: t);

. end arr-procs;
end Instrument;

- ~ ~ ~ ~ ~ ~ ~~~ -. -:- -- - - - - - -°

REPORTWRITER.ADA:

- with INQUIRYOPERATIONS; use INQUIRYOPERATIONS;
-- This subprogram acts as the 'main' routine of the portion
-- of the Benchmark system that deals with information
-- retrieval and user interaction.
procedure REPORTWRITER is
begin

S INITIALIZE; -- display greeting and helpful prompt Eli

B.11!

... .' . . mL. iaa .m m .N .i .*. .~ .n i. a.ma. . . . I i

:~ ,

loop
case REQUEST is

when COLLECTCOMMAND =, COLLECTFILES;
,- -- -- set up statistics files

when SELECTCOMMAND => SELECTATTRIBUTES;
-- customize display .

when LIST-COMMAND = LISTSTATISTICS;
-- display statistics and database attributes

when SAVE-COMAND SAVESTATISTICS;
-- display statistics and database attributes
-- (to named file)

when PRINT-COMMAND =>PRINTFILES;
-- dump contents of statistics files to screen

when HELPCOMMAND -, HELPPROMPT;
-- display helpful prompt

when QUIT-COMMAND =Q QUIT; exit;
-- close files

end case;
end loop;

end REPORT-WRITER;

- ------ '..

B..12

APPENDIX C: Report Writer's Guide

" II. INTRODUCTION

The report writer is used by the Prototype ACEC system to
* report statistics generated by the host/target system and data

supplied with the ACEC. The user carries on an interactive
dialog with the report writer via a menu. From this menu, the
user can 1) indicate which files are to be used as statistics
files, 2) specify both the test attributes to be displayed and
the type of database query, and 3) choose to list information
either to the terminal or to a file. The remainder of this
guide contains specific information on the menu (Section II) and
the menu options (Section III). Section IV is an example run of
the report writer.

II. MENU

There are seven options present in the report writer's menu.
The first option, "C", collects the names of the files to be used
as statistics files. The second option, "S", provides for

R setting the test attributes to be displayed and for changing the
database query parameter. Choosing the list option, "L", queries
the database using the attributes and parameter set by the second
option and lists the desired information to the terminal. Option
"P" displays all of the contents of all of the collected
statistics files. Not only can the database information be
displayed on the terminal, but it can also be put into a data
file. This file is specified by using the fifth option, "F".
This option acts exactly like the list option except the output
is sent to the given file instead of to the screen. If, at any
time when the menu is displayed, you need some help, enter "H" to
view the short help prompt. Finally, to leave the report writer,
select the option "Q", for "quit". When quitting, all opened
statistics files are closed and control is returned to the host
system.

When the report writer is first executed, and after
completing an option (except the QUIT option), the menu is
displayed. Only the responses given in the menu are valid.
Entering an invalid response will simply cause a reprompt. The

- .. responses can be given either in upper- or lower-case characters.
The menu is as shown on the following page:

r
C.1

"•.•.. ..

Valid choices are:
C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen. ...-
F Save output to named file. ---,

-'- H Re-display help prompt.
Q Quit processing.

Please enter your choice:

III. OPTIONS

Whenever the menu is displayed, entering a valid response
will result in a confirmation statement, such as "COLLECT command

* accepted" for the "C" response. Any values set in an option can
be changed and rechanged as many times as necessary while running '?-

.. the report writer.

* III.a. COLLECT, "C"

-The COLLECT option collects the names of the files to be used
as the statistics files. These statistics files are the
compilation file, the run time file, and the instrumentation
file. At the beginning of a session with the report writer,
there are no file names associated with the files; they are "not
defined." When this command is invoked, the current status of

* the statistics files is given. The user can then decide either
not to change the status of these files, or to selectively change
command, the new file status is given. Below is an example of

using this option, where the user wants to change the compilation
file to 'c.data', the run time file to 'r.data °, and wants to
leave the instrumentation file unchanged:

Please enter your choice: c
COLLECT command accepted.

- .COMPILATION file is not defined.
RUNTIME file is not defined.

* .- INSTRUMENTATION file is not defined.

-- the current files' status r

C.2

" -:- --

Do you wish to change-file(s)? (yin]: y
COMPILATION file is not defined. &

Do you wish to change? [yin]: y
File name?: c.data
c.data ... open.

-- compilation file is now c.data
RUNTIME file is not defined. &

Do you wish to change? [yin]: y
File name?: r.data
r.data ... open.

-- run time file is now r.data L
INSTRUMENTATION file is not defined. &

Do you wish to change? [yin]: n
COMPILATION file is c.data
RUNTIME file is r.data -- the new status
INSTRUMENTATION file is not defined

The file names given must have six characters. The file
must also exist in order to be used by the report writer.

t However, entering a nonexistant file will not cause a problem:

-• - - ?:

COMPILATION file is not defined. &
Do you wish to change? [yin]: y

File name?: nofile L
nofile *** File not found

The files collected can be changed or closed by the COLLECT
IL command. Whenever a yes response ("y") is received to the

prompt "Do you wish to change? [yin]", the currently opened
statistics file is closed and the user is asked for a file name.
To keep that statistics file closed ("not defined"), simply enter
a carriage return as the file name. Entering a six character
file name will open that file. The file opened will be used as
the statistics file. For example, given the three files are
currently defined as 'o.data', 'r.data', and 'i.data'
respectively, and we want to change the compilation file to
'cl.dat', leave the run time file as is, and close the
instrumentation file, the example discourse with the report
writer follows:

Please enter your choice: c
COLLECT command accepted.

COMPILATION file is c.data
r- RUNTIME file is r.data

C.3

o. ..-. .-. .-. . -. .-°- . ..- -- . . . - -. - , • . . .

INSTRUMENTATION file is i.data
Do you wish to change file(s)? [yin]: y
COMPILATION file is c.data &

Do you wish to change? [yin]: y
c.data ... closed.File name?:cl.dat
cl.dat ... opened
RUNTIME file is r.data &

Do you wish to change? [yin]: n
INSTRUMENTATION file is i.data &

Do you wish to change? [yin]: y
i.data ... closed.File name?:

-- enter a carriage return
COMPILATION file is cl.dat
RUNTIME file is r.data
INSTRUMENTATION file is not defined-I - -- - - - - - -

III.b. SELECT, "S"

The SELECT prompt is used to change the database query and
9 to specify which attributes of the tests are to be displayed.
*There are two basic database queries. The first is LISTBYNAME,

and the other is LISTBYCATEGORY. The LISTBYNAME query is
used to gain information about single specific tests. The
LISTBYCATEGORY query finds all tests that satisfy the category
parameter specified. The possible values for the category query
are Architecture, E and V Criteria, Language Feature, Version,
and Statistic. Under each of these categories are the specific
values" Normative performance, Normative capacity, Optional
feature, and Optional algorithm are Architecture values. Below
is an example of using the SELECT option to change only the
database query, with the default list setting and category
setting marked:

SELECT command accepted.
Do you wish to change query? [yin]: y
Listing setting: LISTBYNAME -- default list setting
Do you wish to change? [yin]: y
Listing setting: LISTBYCATEGORY
Category is: ARCHITECTURE Current Value is EVERY

-default for category
Do you wish to change both Category and Value? [yin]: y
The choice is one of the following:

ARCHITECTURE
E_AND_V
LANGUAGEFEATURE
VERSION
STATISTICS

C.4

1t "

..

C

Select the new category as it comes by...

ARCHITECTURE [yin]: n
E_ANDV [yin]: y -- select the EAND_V category

. Now, select a value as it comes by ...
EFFCYO1 [yin]: n
EFFCY06 [yin): y -- select the EFFCY06 value
Category is: EANDV Current Value is EFFCY06
Do you wish to change display? [yin]: n

After specifying the desired query, the user can change the
display. If the user requires changes to be made, the first
display prompt concerns whether the information for display must
be in its long or short form. 'EFFCYO1' is the short form of
efficiency criteria 01, whereas "Speed of object code generation"
is the long form. With the short form, short language feature
names and only one header for the various statistics file data
are printed. The other questions concern which attributes are to
be printed. For all of the attributes, the current setting ofth pto is gvnand the usris asked whether to chnethe

current setting or to leave this value unchanged. After all the
. iattributes have been set, the new values of the options are shown.
* Below is an example, with the default display options marked:

* SELECT command accepted.
Do you wish to change query? [yin]: n
Do you wish to change display? [yin]: y
Display options are:

Attribute: SHORT Current value is: FALSE dat
• . --default

Do you wish to change? [yin]: n
Attribute: TESTNAME

Current value is: TRUE
-- default

Do you wish to change? [yin): n
Attribute: DESCRIPTION

Current value is: TRUE
-- default

Do you wish to change? [yin]: n
Attribute: ARCHITECTURE

Current value is: TRUE
-- default

Do you wish to change? [yin]: y
... changed.

Attribute: EANDV Current value is: TRUE
-- default

C.5

- .-? B

..

rrrr ~ - .,...._

Do you wish to change? [yin): y
changed.

Attribute: LANGUAGEFEATURE Current value is: TRUEU -- default
Do you wish to change? [yin]: y..changed.

Attribute: VERSION Current value is: TRUE changed
-- default

Aru :TIIDo you wish to change? [yin]: n
Attribute: STATISTICS

Current value is: TRUE
-- default

Do you wish to change? [yin]: n
Display options are:

Attribute: SHORT Current value is: FALSE
Attribute: TESTNAME Current value is: TRUE
Attribute: DESCRIPTION Current value is: TRUE - -
Attribute: ARCHITECTURE Current value is: FALSE

' Attribute: EANDV Current value is: FALSE
Attribute: LANGUAGEFEATURE Current value is: FALSE

t Attribute: VERSION Current value is: TRUE
Attribute: STATISTICS Current value is: TRUE

- III.c. LIST, "L"

The LIST option is used to query the database. If the query
"is LIST_BYNAME, then a 'test unit name' will be asked for. After

the test name is received, information about that test is
displayed according to the display settings made by the user (or

* the defaults). For the LISTBYCATEGORY query, all entries in K
the database that satisfy the query will be displayed according
to the display settings. . -

Below are examples of both LISTBYNAME and LISTBYCATEGORY
sessions: I

LISTBYNAME with display options DESCRIPTION, and
STATISTICS and only the compilation statistics file opened.

Please enter your choice: 1
LIST command accepted.
What is the test unit name? piala2 . -
Description: PI Algorithm (test)
Statistics: BOTH

COMPILATION

C.6 rB

..
.

..

I~~~ J..-*'

Name Elapsed/CPU Code/Data Comments
PIALA2 14.29 2.10 1536

Do you want to list another unit? [yin]: y F
What is the test unit name? tpitc2
Description: Task Performance w/10 Idle Tasks (test)
COMPILATION
Name Elapsed/CPU Code/Data Comments
TPITC2 18.79 4.56 11776

Do you want to list another unit? [yin]: y
What is the test unit name? notest
Description:
. Sorry, NOTEST does not have a database entry
Do you want to list another unit? [yin]: n

LISTBYCATEGORY with category EANDV value EFFCY26 and
display options SHORT, TESTNAME, EANDV, and LANGUAGEFEATURE:

Please enter your choice: 1
LIST command accepted.

Test Name : ADDSA1
E and V Criteria: EFFCY21 EFFCY22 EFFCY01 EFFCY26

. Language Feature(s): BINARYADDS

Test Name: ADDSA2
E and V Criteria: EFFCY21 EFFCY22 EFFCY01 EFFCY26
Language Feature(s): BINARYADDS

-. - - - -

III.d. PRINT, "P"

The PRINT option dumps all of the collected statistics
files to the screen. If there are no statistics files collected
then nothing will be printed to the screen.

III.e. SAVE or FILE, "F

The "F" option is exactly like the LIST option except that
the information extracted from the database is put into a file
specified by the user. The file name asked for must be six (6) r

C.7

r rr rr r,.-- - * * nr. --. - *..- . .<'.

characters long. At the completion of this command, the
specified file will be closed. The following example is just
like the LIST example above, where the category was LISTBYNAME:

Please enter your choice: f
SAVE command accepted.
File name?: listed

4L listed ... open.
What is the test unit name? piala2
Do you want to list another unit? [yin]: y
What is the test unit name? tpitc2
Do you want to list another unit? [yin]: n
listed ... closed.

Here is the file 'listed':
-~~~~~. - - - - --

Description: PI Algorithm (test)
Statistics: BOTH

COMPILATION
Name Elapsed/CPU Code/Data Comments
PIALA2 14.29 2.10 1536

Description: Task Performance w/10 Idle Tasks (test)
Statistics: BOTH

COMPILATION
Name Elapsed/CPU Code/Data Comments

TPITC2 18.79 4.56 11776

III.f. HELP, "H"

The HELP option re-displays the report writer header.

III.g. QUIT, "Q"

To quit from the report writer, enter the QUIT response to
the menu prompt. When quitting, all opened files are closed.

C.8

t-
. . -

N T

IV. EXAMPLE

Below is an example of running the report writer from
beginning to end:

Initializing Inquiry-Operations.

There are 3 parameters you can set/change:

1. COLLECT the names of files which contain Statistics
Then SELECT the Attributes you wish to display.

2. The Query parameter tells the Report Writer how to search the
Database and Statistics files.

You can query by Name or by Category.
3. The Display parameter tells what test unit Attributes to display.

The LIST command produces the Report you've defined.

r Use the PRINT command to see what's in the selected &
Statistics files.

SAVE is just like List, but lets you put the report in a &
named file for

later processing in the Host environment.

You can change Statistics files and Attributes as often as &
you wish.

See the User's Manual for details.

Ready to continue? [yin]: y
* Valid choices are:

C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.
Q Quit processing.

Please enter your choice: 1
LIST command accepted.

What is the test unit name? akera2
Test Name: AKERA2
Description: Ackermann function (test)
Version: TEST
Architecture Category: OPTIONALALGORITHM
E and V Criteria: Object code size

Execution time
Speed of object code generation

C.9

-o

Language Feature(s): Subprogram Calls
Scalar Types, Declarations, and Object "

DeclarationspStatistics: BOTH

Do you want to list another unit? [yin]: y
What is the test unit name? sieval
Test Name: SIEVAI
Description: Sieve of Eratosthenes (control)
Version: CONTROL
Architecture Category: OPTIONALALGORITHM
E and V Criteria: Object code size

Execution time
Speed of object code generation
Execution time, arith. & logic opers

Language Feature(s): Loop Statements
Relational Operators and Membership Tests
Binary Adding Operators

Statistics: BOTH

Do you want to list another unit? [yin]: y
V What is the test unit name? notest

Test Name: NOTEST
Description:
* Sorry, NOTEST does not have a Database entry.

Do you want to list another unit? [yin]: n
Valid choices are: .

C Collect names of statistics files.
S Select attributes for reporting.
L" List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.

- Q Quit processing.

Please enter your choice: j
... please try again.

h
HELP command accepted.
There are 3 parameters you can set/change:

1. COLLECT the names of files which contain Statistics
Then SELECT the Attributes you wish to display.

2. The Query parameter tells the Report Writer how to search the
Database and Statistics files.

You can query by Name or by Category.3. The Display parameter tells what test unit Attributes to display.
The LIST command produces the Report you've defined.

Use the PRINT command to see what's in the selected &
Statistics files.

C. 10

............. .- .

SAVE is just like List, but lets you put the report in a .
named file for

later processing in the Host environment.

i You can change Statistics files and Attributes as often as &
you wish.

See the User's Manual for details.

Ready to continue? [yin]: y
Valid choices are:

C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.
Q Quit processing.

Please enter your choice: o
COLLECT command accepted.

COMPILATION file is not defined.
RUNTIME file is not defined.
INSTRUMENTATION file is not defined.
Do you wish to change file(s)? [yin]: y
COMPILATION file is not defined. Do you wish to change? [yin]: y
File name?: nofile

i * nofile * File not found.

RUNTIME file is not defined. Do you wish to change? [yin]: n
INSTRU1MENTATION file is not defined. &

Do you wish to change? [yin]: n
COMPILATION file is not defined.

m pRUNTIME file is not defined.
INSTRUMENTATION file is not defined.

Valid choices are:
C Collect names of statistics files.
S Select attributes for reporting. -
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.
Q Quit processing.

Please enter your choice: c

COLLECT command accepted.

COMPILATION file is not defined.

RUNTIME file is not defined.
INSTRUMENTATION file is not defined.
Do you wish to change file(s)? [yin]: y -

C.11

:::::

-. . r .. .'Vr - . o -

t

COMPILATION file is not defined. Do you wish to change? [yin]: y
File name?: c.data
c.data ... open.
RUN_TIME file is not defined. Do you wish to change? [yin]: y 0
File name?: r.data
r.data ... open.

,- INSTRUMENTATION file is not defined. -
Do you wish to change? [yin]: y

:- File name?: i.data
i.data ... open.
COMPILATION file is c.data
RUNTIME file is r.data
INSTRUMENTATION file is i.data

Valid choices are:
C Collect names of statisti-s files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.

- H Re-display help prompt.
r Q Quit processing.

Please enter your choice: 1
LIST command accepted.
What is the test unit name? piala2
Test Name: PIALA2

" * Description: PI Algorithm (test)
Version: TEST
Architecture Category: OPTIONALALGORITHM
E and V Criteria: Speed of object code generation

Object code size
Execution time
Execution time, arith. & logic opers .

Language Feature(s): Binary Adding Operators
Multiplying Operators
Highest Precedence Operators

Statistics: BOTH
COMPILATION
Name Elapsed/CPU Code/Data Comments

- PIALA2 14.29 2.10 1536

RUN_TIME
Name Event Elapsed/CPU Code/Data Comments

PIALA2 11.20 0.18 512 512

IN STRU14ENTATION
Name Event Elapsed/CPU Comments

. PIALA2 STOPREC 0.00 0.00

" F Do you want to list another unit? [yin]: y r
C.12

• -. . .- -. *

What is the test unit name? tpitc2
Test Name: TPITC2
Description: Task Performance w/10 Idle Tasks (test)

- f Version: TEST
Architecture Category: NORMATIVEPERFORMANCE
E and V Criteria: Speed of object code generation

Idle task effect on performance
Object code size
Execution time

i - Language Feature(s): Task Types and Task Objects b
Task Execution - Task Activation

Statistics: BOTH
COMPILATION
Name Elapsed/CPU Code/Data Comments

TPITC2 18.79 4.56 11776

RUN_TIME
Name Event Elapsed/CPU Code/Data Comments

TPITC2 11.77 1.30 512 512

INSTRUMENTATION

r Name Event Elapsed/CPU Comments L
TPITC2 STOPREC 1.36 1.36

Do you want to list another unit? [yin]: n
Valid choices are:

- C Collect names of statistics files.m S Select attributes for reporting. -

L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.
Q Quit processing.

mL
Please enter your choice: s

SELECT command accepted.F Do you wish to change query? [yin]: y
Listing setting: LISTBYNAME
Do you wish to change? [yin]: y
Listing setting: LISTBYCATEGORY
Category is: ARCHITECTURE Current Value is EVERY
Do you wish to change both Category and Value? [yin]: y
The choice is one of the following:

ARCHITECTURE
E_AND_V
LANGUAGEFEATURE
VERSION
STATISTICS

" Select the new category as it comes by...

-" , ARCHITECTURE [yin]: n
E-ANDV [yin]: y F" r

C.13"

.... ' -....

Now, select a value as it comes by ...
EFFCY01 (yin]: n
EFFCY06 [yin]: n
EFFCY13 (yin]: n
EFFCY18 [yin]: n
EFFCY21 [yin]: n
EFFCY22 [yin]: n
EFFCY26 [yin]: y
Category is: EANDV Current Value is EFFCY26
Do you wish to change display? [yin]: y
Display options are:

Attribute: SHORT Current value is: FALSE
Do you wish to change? [yin]: y

changed.
Attribute: TESTNAME Current value is: TRUE

Do you wish to change? [yin]: y..changed.
Attribute: DESCRIPTION Current value is: TRUE cae

Do you wish to change? [yin]: y
changed.

Attribute: ARCHITECTURE Current value is: TRUE
Do you wish to change? [yin]: n

Attribute: EAND_V
Current value is: TRUE
Do you wish to change? [yin]: n

Attribute: LANGUAGEFEATURE
Current value is: TRUE
Do you wish to change? [yin]: n

Attribute: VERSION
Current value is: TRUE
Do you wish to change? [yin]: y

changed. "-"
*Attribute: STATISTICS Current value is: TRUE

Do you wish to change? [yin]: n
. "Display options are:

Attribute: SHORT Current value is: TRUE
Attribute: TEST-NAME Current value is: FALSE
Attribute: DESCRIPTION Current value is: FALSE
Attribute: ARCHITECTURE Current value is: TRUE

*. Attribute: EANDV Current value is: TRUE
Attribute: LANGUAGEFEATURE Current value is: TRUE
Attribute: VERSION Current value is: FALSE
Attribute: STATISTICS Current value is: TRUE

Valid choices are:
C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files. -.

P Print contents of current files to screen.
- F Save output to named file.

C. 14

• / S

A~~~~7 7. ,--

H Re-display help prompt.
Q Quit processing.

Please enter your choice: 1
-. - LIST command accepted.

Architecture Category: NORMATIVEPERFORMANCE
E and V Criteria: EFFCY21 EFFCY22 EFFCY01 EFFCY26
Language Feature(s): BINARY-ADDS

m Name Event Elapsed/CPU Code/Data Comments
ADDSA1 13.74 2.30 1536

* ADDSA1 13.23 0.30 512 512

ADDSA1 STOPREC 0.16 0.16

Architecture Category: NORMATIVEPERFORMANCE
E and V Criteria: EFFCY21 EFFCY22 EFFCY01 EFFCY26
Language Feature(s): BINARY-ADDS
Name Event Elapsed/CPU Code/Data Comments

ADDSA2 28.50 1.95 1536

ADDSA2 11.71 0.28 512 512

ADDSA2 STOPREC 0.23 0.23

Architecture Category: NORMATIVEPERFORMANCE
* E and V Criteria: EFFCY21 EFFCY22 EFFCY01 EFFCY06 EFFCY29 &

EFFCY26
Language Feature(s): BINARY-ADDS PRAGMASUPPRESS

* Name Event Elapsed/CPU Code/Data Comments
ADDSA3 28.99 2.10 1536

ADDSA3 11.89 0.30 512 512

ADDSA3 STOPREC 0.11 0.11

Architecture Category: NORMATIVEPERFORMANCE
E and V Criteria: EFFCY21 EFFCY22 EFFCY01 EFFCY26
Language Feature(s): MULTIPLYINGOPS
Name Event Elapsed/CPU Code/Data Comments

MULTAI 15.00 1.85 1536

MULTA1 11.20 0.28 512 512

MULTAI STOPREC 0.08 0.08

C. 15

* bm'h hb, %

k-* T.4 Wr L- T- 1- 1; - X w . T%, - w- .

-- many database responses have been deleted from this example.
-- There were a lot of them.

Valid choices are:
C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.
Q Quit processing. - v

Please enter your choice: c
COLLECT command accepted.

COMPILATION file is c.data
RUNTIME file is r.data
INSTRUMENTATION file is i.data
Do you wish to change file(s)? (yin): y
COMPILATION file is c.data '

Do you wish to change? [yin): y
c.data ... closed.File name?:
RUNTIME file is r.data & L

Do you wish to change? [yin): y
r.data ... closed.File name?:
INSTRUMENTATION file is i.data :

Do you wish to change? [yin]: n
COMPILATION file is not defined.

.= RUNTIME file is not defined.
INSTRUMENTATION file is i.data

-" . Valid choices are:
C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.

' Q Quit processing.

Please enter your choice: s
SELECT command accepted.
Do you wish to change query? (yin]: y
Listing setting: LISTBYCATEGORY
Do you wish to change? [yin]: y
Listing setting: LISTBYNAME . .

.: Do you wish to change display? (yin]: y
*. . Display options are:

Attribute: SHORT Current value is: TRUE ..-

Do you wish to change? [yin]: n
C L

,. ,..: C. 16 :.:

"-::

. ::::.::*

.°

Attribute: TESTNAME
Current value is: FALSE
Do you wish to change? [yin]: n

* Attribute: DESCRIPTION
Current value is: FALSE
Do you wish to change? [yin]: n "I

Attribute: ARCHITECTURE.K1
Current value is: TRUE
Do you wish to change? [yin]: y.. changed. ..Attribute: EANDV Current value is: TRUE .

Do you wish to change? [yin]: y
... changed.

Attribute: LANGUAGEFEATURE Current value is: TRUE
Do you wish to change? [yin]: y

... changed.
* Attribute: VERSION Current value is: FALSE

Do you wish to change? [yin]: n
Attribute: STATISTICS

Current value is: TRUE
Dipa pin r:Do you wish to change? [yin]: n~Display options are:

Attribute: SHORT Current value is: TRUE
Attribute: TESTNAME Current value is: FALSE
Attribute: DESCRIPTION Current value is: FALSE

- Attribute: ARCHITECTURE Current value is: FALSE
Attribute: EAND_V Current value is: FALSE
Attribute: LANGUAGEFEATURE Current value is: FALSE
Attribute: VERSION Current value is: FALSE
Attribute: STATISTICS Current value is: TRUE

Valid choices are:
C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.

" . H Re-display help prompt. -

Q Quit processing.

Please enter your choice: 1
LIST command accepted.
What is the test unit name? addsal
Name Event Elapsed/CPU Code/Data Comments
ADDSAI STOPREC 0.16 0.16

Do you want to list another unit? [yin]: y
What is the test unit name? addsa2
Name Event Elapsed/CPU Code/Data Comments

ADDSA2 STOPREC 0.23 0.23

C. 17

JI
Do you want to list another unit? [yin]: n
Valid choices are:

C Collect names of statistics files.
S Select attributes for reporting.

. L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file. U'

" .H Re-display help prompt.
Q Quit processing. j

*, Please enter your choice: f
SAVE command accepted.
File name?: listed
listed ... open.
What is the test unit name? addsal
Do you want to list another unit? [yin]: y
What is the test unit name? addsa2
Do you want to list another unit? [yin]: n
listed ... closed.
Valid choices are:

C Collect names of statistics files.
S Select attributes for reporting.
L List selected attributes from files.
P Print contents of current files to screen.
F Save output to named file.
H Re-display help prompt.
Q Quit processing.

Please enter your choice: q L
QUIT command accepted.

* i.data ... closed.

r -- Below is the file 'listed'.

Name Event Elapsed/CPU Code/Data Comments
ADDSAI STOPREC 0.16 0.16

Name Event Elapsed/CPU Code/Data Comments
ADDSA2 STOPREC 0.23 0.23

C. 18

•,V o

APPENDIX D EXECUTION EXAMPLES ,-

DATA GENERAL MV 10000: h

Below is the test harness. Examples of the input and
output files will follow. In the following command procedures,

& is a line continuation character,
6%n% is a symbol for the n-th parameter passed to the

g t command,
(file] is an expansion symbol, so that this symbol is expanded

to the contents of the named file, and
:udd:f.n is a sample pathname for a file.

Note that naming a file as a command requests that the file
name requested, plus a ".cli" on the end, is used as further
input to the command line interpreter at that point in the
command file.

The following is ":udd :benchmarks :harness-many. oli", the
main command file. This command file creates the compilation
statistics and run-time statistics files, in that order, and
batches a job to generate the statistics. The batch command runs

!-" onto a second line, as indicated by the ""'.

,- - -'.-.-- - - -.- - - - - - - - - -

create harness, out
I create Instr-dat

qbatch/qpri=101/qoutput-%1%. log/notify &
:.udd:benchmarks:harness-a %1%

The following is :udd:benohmarks:harness-a.cli, called from
the file above. This file is useful only to insure that only

- one Ada compilation or execution is being created by this set of
: .command files at a time.

- --

- :udd:benchmarks :harness [%1%]

The following is :udd:benchmarks:harness.oli, which
contains all the commands for a single test job. Harness first
records the name of the test on the temporary statistics file
(%1%.stat). Next it records the current (elapsed) time and the
amount of CPU time used so far by this process. After compiling
and linking the test file, the current time and amount of CPU
time used are recorded again; the execution time statistics will

D.1

- -- .. ' r w % . *

. be derived from this information. After a fifteen second pause,
the size of the produced load image is recorded on the temporary
statistics file (by a little program called "HFORMAT", designed
for that purpose). The collected statistics are then appended .
to the enduring statistics file, and the temporary compilation
statistics file is deleted. Lastly, the test program is run, the'.. '.- statistics produced by the instrumentation package are appended ...

to the enduring instrumentation statistics file, and the I
temporary statistics file is deleted.

write/l=%l%. stat %1%
runtime/l=%1%. stat
ada/main remakes :%1-%
adalink %1%
runtime/l-%l%. stat
pause 15
fi/length/nheader/l-%%. stat %1%.pr
x :udd:benchmarks:hformat %1%.stat %1%.stats
copy/a harness.out %1%.stats
delete %1%.stats
x %1%

. -copy/a/1-warning/2-warning instr.dat instr
delete instr

Here is a sample input file to the test harness for the -:
AOS/VS system. The test harness would be executed with the

, .) command "harnessmany input.file" where the file "input.file" is
shown below. The parentheses and ampersands are part of the
AOS/VS command line syntax, which allow the processing of eachrlisted test in turn.

*-. (ADDSAI &

ADDSA2 &
ADDSA3)

Below is the generated file "harness.out", which is the
compilation statistics file for the input listed above.

D.2

b: •'" "r

D...2,

*'.

" .r ' .- ,

ADDSAI 254.000 5.069 319488 V

ADDSA2 375.000 5.071 319488
*ADDSA3 650.000 5.023 319488

Below is the generated file "instr.dat", which is the file
containing the instrumentation statistics collected during the
run for the input above. Note that the lines have been broken to
fit in this manual; the "&" is used as a continuation character.

ADDSA1 START_REO 0.000 0.000 &
ADD PROGRAM, CONTROL VERSION - 10-..000 ADDS

ADDSAI STOPREC 0.301 0.301
ADDSA2 STARTREC 0.000 0.000 &

ADD PROGRAM, W/o PRAGMAS - 10_..000 ADDS
ADDSA2 STOPREC 0.400 0.400
ADDSA3 START_REC 0.000 0.000 &

ADD PROGRAM, WITH PRAGMAS -10_000 ADDS
ADDSA3 STOPRHO 0.201 0.201

D.3

41

I

VAX /VMS:

The following is 'USW:[BENCEMARK.WORK]HARNESSMANY.COM', the
main command file:

$! This VAX/VMS command file loops through a file
! containing ADA source benchmark test file names and

$! submits them to the test harness for the collection of
. S! the various statistics. For this implementation, this

S! COM file must be submitted as a batch Job.

$! The name of the file containing the test names is given as
$! the first parameter to this command procedure.
5! 1,._.

.! The second parameter is the directory in which these tests

.$! must reside.
$5!

$. Set the default ADA library

$ acs set lib usw:[benchmark.mike.adalib]

$! Set the default directory to usw:[benchmark.work]

$ set def usw:[benchmark.work]

5! Create the three statistic files

$ S create comp.dat
" create instr.dat
S create run.dat

$! Open the file with the test names

$ open/read infile 'pl'

S! Loop through the file of tests, submitting each test to
5! the harness for the collection of the various data.

S loop:
$ read/endoffile-done in-file test
$ @harness 'test' 'p2'
$ ~oto loop
$!
5! At the end of the input file, close the file and
S $! terminate this command procedure.

$ done:
-. $ close in_file

$ S write sysSoutput "All tests have been submitted for testing"

D.4

t . ""

. ,. ..

Below is the command file that is executed by
'HARNESSMANY.COM'. This file's name is
'USW: [BENCHMARK.WORK]HRMNESS.C14'.

- -' - - - - - - - - - - -

* 5! This VAX/VMS command file performs functions necessary to
5' collect various data about ADA source test files.
5! These data are put into the files 'comp-dat'

* S ! (compilation statistics), 'instr-dat'
Si (instrumentation statistics) and 'run.dat' (run-time
Si statistics).

5Record the current elapsed and cpu times (before
S! compilation)

$ begcopu-time - f~getjpi(" , cputim")
$ beg-time - f~time()
$!
S! Compile and link the test

$ ada/nocopy-souroe 'p2''pl'
$ acs link 'p1'

$! Record the current elapsed and cpu times (after
$! compilation)

$ endcopu-time - f~getjpi(" , "cputim")
$ end-time -f~time()

$! 'file' =file-spec of the object file created by the
$! compilation

$ file - "usw:[benchmark.mike.adalib]" + p1 + ".obj"

$! Calculate the number of bytes in the object file

$ blocks-.used - f~file-attributes file,"eof")
$ block-size - f~file-attributes(file,"bls")
$ file-size - blocks-used *block-size

$! Calculate elapsed cpu time (in hundredths of seconds)

$ cpu..time - (en&..cpu..time - beg-pu..time)

$! Divide the elapsed cpu time into seconds and
* $! hundredths-seconds

*~ o pu-time-secs - cpu-.time / 100
$ cpu-time-hundsecs o pu-time - 100 * pu...time-secs

D. 5

$! Calculate elapsed time
5!The CON file 'caleelapsed-time' takes the 'beg-.time'
5! and 'end-time' and returns the elapsed time in its
5! seconds and hundredths seconds parts. These values are

$1 placed in the global symbol table and have symbol names
S! 'elapsed-time-secs' and 'elapsed-time..hundsecs'.

S @calc-elapsed-time "''beg-.time'" "''endtime'"

IL $!
5Put the compilation statistics in one output line

$ out-..line -"''pl' ''elapsed-time-.secs'." -

"'elapsed..time..hundsecs' "+-

'cpu time_secs'.''cp..time_hundsecs' ''file-size'"
$!
5Append the output line onto the file

S open/append comp comp.dat
$ write oump out-line
$ close comp

S! Record the current elapsed and cpu times (before
5!execution)

$ beg....putime =f~getjpi(" putim")
$ beg-time - f~time()

Ii S!
$! Run the executable file

$ run 'pl'.exe

$! Record the current elapsed and cpu times (after execution)

$ endcpu..time - f~getjpi("", "cputim")
$ end-time - f~time()

$! Append the instrumentation statistics to instr.dat

$ append instr.; instr.dat

$! Calculate elapsed cpu time Cin hundredths of seconds)

$ cpu-.time - (end-o.putime - beg-o.pu..time)

S! Divide the elapsed cpu time into seconds and
$! hundredths-seconds
$!
S cpu-.time-.secs - cpw..time / 100
S cpu..time...hundsecs o pu-.time - 100 * pu...timesecs

D.6

$! Calculate elapsed time
$!
$ @calc...elapsed-time "''beg-..time'" "''end-..time,"

8Put the available execution statistics in one output line

$ out-line -'"'p1' ''elapsed-time-secs'."+-
- "''elapsed..time hundsecs' "+-

L"'''cpu time_secs'.''pu..time-hundsecs' 512 512"

3Append the output line onto the file

$ open/append run run.dat
*$ write run out-line

$ close run

$! Delete unnecessary files

$ del instr.; *
* -S delete Dp1I.exe.*
~ $ acs delete unit 'p1'

-

Here is the file 'USW: (BENCHMARK. WORK) CALC...ELAPSEDTIME.COM':

--
$! Calculate the elapsed time between the beginning time and

* . 3' the ending time (the first and second parameters).
3!The times are given in the VAX/VMS format. The two

$! times are assumed to be less than 24 hours apart!
$!

$! Disect the beginning time (first parameter) into time
$! units

*$ beghs - f~extract(21,2,pl) !hundredths of seconds
$ beg-sec - f$extract(18,2,pl) 'seconds I
$ beg-min - f$extract(15,2,pl) 1 minutes

*$ beg-hr - f~extract(12,2,pl) hours

3Disect the ending time (second parameter) into time units

* end-hs - flextract(21,2,p2) ! hundredths of seconds
$ end-sec - f~extract(18,2,p2) !seconds

*$ end-mmn - f$extract(15,2,p2) minutes
$ end-hr - fleztract(12,2,p2) !hours
8!
S ! Convert each of the times to hundredths of seconds

D.7

*7 - 7T"7 -701 - - -

$ beg-time -
(((beghr * 60) + beg-min) * 60 + beg-see) * 100 + beghs

$ end_time = -S! (((endhr * 60) + end-min) * 60 + endsec) * 100 + endhs

$! Get the total elapsed time (in hundredths of seconds)

$ totaltime = end-time - beg time

A! If the total time is negative then the beginning and end
.!$ times were on different days.

$ if totaltime .1t. 0 then -
totaltime - (((24 * 60) * 60) * 100) + end_time - beg-time

$! Seperate the elapsed time into seconds and hundredths of
$! seconds
SI
$ total_time-secs - totaltime / 100
$ total_timehundsecs - total_time - total_timesecs * 100

$! Put the elapsed time in the global symbol table, so that
$' it can be accessed.

$ elapsed-timesecs -- total_timesecs
$ elapsed-timehundsecs = total_timehundsecs

$ exit

Here is an example of an input file to the 'HARNESSMANY'
COM file:

CAPAA1
CAPAA2
NRPCA1
NRPCA2

The format of this file must be as given above in order to
use these COM files. No file type is given on the file names;
however, they must be of type '.ADA' in their resident directory.

The main COM file would be executed with the command

"S submit HARNESSMANY/parameters-(file.spec, dirspec) -

/queue-big"

where 'file-spec' is the VAX/VMS file specification of the file

.'. .

containing the names of the tests and 'dir-spec' is the directory
specification of the directory containing the tests.

Here is an example of executing the main COM file, and the k
system messages received:

-: -. -- ", - - - - - - - - - - -

$ submit harnessmany/parameters=(new. 1st,usw: [benchmark. newJ) -

/qu'eue=big

Job HARNESSMANY (queue BIG entry 355) started on BIG

Job HARNESSMANY (queue BIG entry 355) completed

Below is the file 'comp.dat', which is the compilation
statistics file generated for the input file above.

CAPAA1 22.76 3.64 3584
CAPAA2 19.6 3.85 3584
NRPCA1 20.26 3.73 4096
NRPCA2 19.28 3.79 4096

Below is the generated file 'run.dat' with the run-time
statistics for the input file given above. NOTE: The last two
numbers do not mean anything; they are there simply to make the
format of the execution statistics file what is expected by the
Report Writer.

CAPAA1 11.95 0.21 512 512
CAPAA2 12.23 0.24 512 512
NRPCA1 11.15 0.24 512 512
NRPCA2 10.93 0.20 512 512

Below is the file 'instr.dat', containing instrumentation
statistics generated for the input file above. Lines too long to

* fit in the manual are denoted by the '&', and continued on the
,' next line.

D."9

- -----------

CAPAA1 STARTREC 0.0000 0.0000 &
Constrained Array Param. Assoc. w/3 elements (Control) k

ICAPAA1 STOPREC 0.0300 0.0300
CAPAA2 START_REC 0.0000 0.0000 &

* CAPAA2Constrained Array Param. Assoc. w/3 elements (test)
CAA2STOPREC 0.0300 000

NRPCA1 STARTREC 0.0000 0.0000 & 2

Nested Recursive Procedure Call (Control)
NRPCA1 STOPREC 0.0500 0.0500
NRPCA2 START_REC 0.0000 0.0000 &

Nested Recursive Procedure Call (Test)

-- ---------------------------- -- -- -- ----

D. 10

Distribution List for IDA Paper P-1879

* Ms. Virginia Castor
Director
Ada Joint Program Office

1211 Fern St., C-107
Arlington, VA 22202

LCDR Phil Meyers
Navy Deputy Director
Ada Joint Program Office
1211 Fern St., C-107
Arlington, VA 22202

Ray Szymanoski
AFWAIJAAAF-2
Wright-Patterson AFB, OH 45433-6503

Mr. Michael Vilot
General Systems Group
51 Main St.
Salem, NH 03079

Dr. Gregory Riccardi
Room 206, Lone Building
Deparment of Computer Science
FLorida State University
Tallahassee, FL 32306

Defense Technical Information Center (2 copies)
Cameron Station
Alexandria, VA 22314

CSED Review Panel

Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm
TRW Defense Systems Group - -

* ". MS 2-2304

One Space Park
Redondo Beach, CA 90278

.," . "

-. '- 1 7P

I

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel-" ';.-; Rational Machines"--

1501 Salado Drive
Mountain View, CA 94043

Mr. Neil S. Eastman, Manager
Software Engineering & Technology
IBM Federal Systems Division
6600 Rockledge Drive
Bethesda, MA 20817

Admiral Noel Gayler, USN, Retired
1250 S. Washington St.
Alexandria, VA 22314

Dr. C.E. Hutchinson, Dean

Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. Oliver Selfridge
h 45 Percy Road

Lexington, MA 02173

Dr. Harrison Shull, Chancellor

University of Colorado
Campus Box B- 17
301 Regent Administration Center
Boulder, CO 80309

Dr. Robert L. Sproull
* --- President Emeritus

University of Rochester
Rochester, NY 14627

MA
Mr. Seymour Deitchman, HQ
Mr. Robin Pirie, HQ
Dr. Thomas H. Probert, CSED
Dr. Jack Kramer, CSED
Dr. John Salasin, CSED
Ms. Audrey A. Hook, CSED (2 copies)
Mr. Stephen Welke, CSED
Ms. Katydean Price (2 copies)

F IDA Control & Distribution Vault (25 copies)

FIME

T C
q

C.'p.--
T3B aM1-PVt - 0 :1 7

